【題目】已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象向右平移個(gè)單位,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的解析式,并寫出它的單調(diào)遞增區(qū)間.
【答案】解:函數(shù)f(x)=2sinx的圖象向右平移個(gè)單位可得:y=2sin(x﹣)的圖象;
再再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得:y=2sin(2x﹣)的圖象;
∴g(x)=2sin(2x﹣),
則2x﹣∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,+kπ],k∈Z,
即函數(shù)y=g(x)的單調(diào)遞增區(qū)間為[﹣+kπ,+kπ],k∈Z.
【解析】根據(jù)函數(shù)圖象的平移變換和伸縮變換法則是,可得函數(shù)y=g(x)的解析式,結(jié)合正弦函數(shù)的單調(diào)性,可得它的單調(diào)遞增區(qū)間.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a2= ,且an+1=3an﹣1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式以及數(shù)列{an}的前n項(xiàng)和Sn的表達(dá)式;
(2)若不等式 ≤m對(duì)n∈N*恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點(diǎn)距地面2米,最高點(diǎn)距地面18米,P是摩天輪輪周上一定點(diǎn),從P在最低點(diǎn)時(shí)開始計(jì)時(shí),則16分鐘后P點(diǎn)距地面的高度是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個(gè)面包分給5個(gè)人,使每個(gè)人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問(wèn)最小一份為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin2x的圖象向左平移個(gè)單位,向上平移1個(gè)單位,得到的函數(shù)解析式為( )
A.y=sin(2x+)+1
B.y=sin(2x﹣)+1
C.y=sin(2x+)+1
D.y=sin(2x﹣)+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠C= ,AC=BC,M、N分別是BC、AB的中點(diǎn),將△BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為 ,則B'N與平面ABC所成角的正切值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理)如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn).設(shè)點(diǎn)P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,側(cè)面PBC⊥底面ABCD,點(diǎn)M在AB上,且AM:MB=1:2,E為PB的中點(diǎn).
(1)求證:CE∥平面ADP;
(2)求證:平面PAD⊥平面PAB;
(3)棱AP上是否存在一點(diǎn)N,使得平面DMN⊥平面ABCD,若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是( )
A.y=x3+x
B.y=logax
C.y=3x
D.y=﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com