【題目】在平面直角坐標(biāo)系xOy中,設(shè)不等式組 所表示的平面區(qū)域是W,從區(qū)域W中隨機(jī)取點(diǎn)M(x,y).
(1)若x,y∈Z,求點(diǎn)M位于第一象限的概率;
(2)若x,y∈R,求|OM|≥1的概率.

【答案】
(1)解:若x,y∈Z,則點(diǎn)M的個(gè)數(shù)共有12個(gè),列舉如下:

(﹣1,0),(﹣1,1),(﹣1,2),(0,0),(0,1),(0,2),

(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).

當(dāng)點(diǎn)M的坐標(biāo)為(1,1),(1,2),(2,1),(2,2)時(shí),

點(diǎn)M位于第一象限,故點(diǎn)M位于第一象限的概率為


(2)解:這是一個(gè)幾何概率模型,

則區(qū)域W的面積是3×2=6,

|OM|<1的面積是以(0,0)為原點(diǎn),以1為半徑的半圓,面積是 ,

故|OM|<1的概率是 =

故滿足|OM|≥1的概率是


【解析】(1)①做出所示平面區(qū)域②畫網(wǎng)格描整點(diǎn),找出整數(shù)點(diǎn)坐標(biāo)個(gè)數(shù),再找出第一象限中的點(diǎn)個(gè)數(shù).二者做除法即可算出概率;(2)這是一個(gè)幾何概率模型.算出圖中以(0,0)為圓心,1為半徑的半圓的面積,即可求出概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識(shí),掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以O為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

)求圓的普通方程;

)直線的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a1+a3=10,S4=24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn= ,求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對(duì)的邊,且 a=2csinA.
(1)確定∠C的大小;
(2)若c= ,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的圖象在處的切線方程;

(2)若任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè), ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列向量組中,能作為表示它們所在平面內(nèi)所有向量的一組基底的是( )
A.=(0,0) =(1,﹣2)
B.=(﹣1,2) =(3,7)
C.=(3,5) =(6,10)
D.=(2,﹣3) =( ,﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是(
A.8
B.
C.12
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長(zhǎng)為 時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案