【題目】已知函數(shù)

(1)求函數(shù)的圖象在處的切線方程;

(2)若任意,不等式恒成立,求實數(shù)的取值范圍;

(3)設(shè), ,證明:

【答案】(1)(2) 3)見解析

【解析】試題分析:(1)本問考查導(dǎo)數(shù)的幾何意義, , ,于是可得切線方程為;(2)本問考查利用導(dǎo)數(shù)研究恒成立問題,不等式恒成立,設(shè)函數(shù),則轉(zhuǎn)化為當(dāng)時, 恒成立,對函數(shù)求導(dǎo), ,再令,對求導(dǎo), ,通過對分區(qū)間討論,使得恒成立,從而得到的取值范圍;(3)首先通過微積分定理求出,由(2)知,當(dāng)時, ,,構(gòu)造函數(shù),通過證明該函數(shù)的單調(diào)性,易得出上恒成立,,于是通過不等式的放縮,可以得到待證明的結(jié)論.

試題解析:(1), ,∴切線為

(2) ,令

又令

①當(dāng),即時, 恒成立,∴遞增

,∴,∴遞增

(不合題意)

②當(dāng)時, 遞減,

,∴,∴遞減

(符合題意)

③當(dāng),即時,由

,∴在上, ,使

時, ,∴遞增,∴(不符合題意)

綜上: .

(3)

,由(2)知,當(dāng)時, ,∴,

又令, ,∴遞減

上恒成立,令

∴原不等式

∴左式右式

∴得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴(yán)重污染

該社團將該校區(qū)在天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算年(以天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算)

)該校日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴(yán)重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項公式為an= ﹣n.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求此數(shù)列的前二十項和S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=y+1上一定點A(﹣1,0)和兩動點P,Q,當(dāng)PA⊥PQ時,點Q的橫坐標(biāo)的取值范圍是(
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,設(shè)不等式組 所表示的平面區(qū)域是W,從區(qū)域W中隨機取點M(x,y).
(1)若x,y∈Z,求點M位于第一象限的概率;
(2)若x,y∈R,求|OM|≥1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點為線段的中點, 現(xiàn)將△沿進行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.

(1)證明:

(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入的部分?jǐn)?shù)據(jù)如表:

x

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

﹣2


(1)請將上表數(shù)據(jù)補全,并直接寫出函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,當(dāng)時,求函數(shù)的最大值;

(3)若,求證: .

查看答案和解析>>

同步練習(xí)冊答案