等腰△ABC的底邊,高CD=3,點E是線段BD上異于點B,D的動點。點F在BC邊上,且EF⊥AB,F(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的表達式。
解:(Ⅰ),
,

,
所以EF⊥平面PAE。   
(Ⅱ)
∴PE⊥平面ABC,
即PE為四棱錐P-ACFE的高,
由高線CD及EF⊥AB得EF∥CD,
,
由題意知,∴, 

而PE=EB=x,
所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,等腰△ABC的底邊AB=6
6
,高CD=3,點E是線段BD上異于點B、D的動點,點F在BC邊上,且EF⊥AB,現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,記BE=x,V(x)表示四棱柱P-ACFE的體積.
(1)求證:面PEF⊥面ACFE;
(2)求V(x)的表達式,并求當x為何值時V(x)取得最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,等腰△ABC的底邊AB=6
6
,高CD=3,點E是線段BD上異于點B,D的動點,點F在BC邊上,且EF⊥AB,現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AC,記BE=x,V(x)表示四棱錐P-ACFE的體積.
(1)求V(x)的表達式;
(2)當x為何值時,V(x)取得最大值?
(3)當V(x)取得最大值時,求異面直線AC與PF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等腰△ABC的底邊BC=3,頂角為120°,D是BC邊上一點,且BD=1.把△ADC沿AD折起,使得平面CAD⊥平面ABD,連接BC形成三棱錐C-ABD.
(Ⅰ) ①求證:AC⊥平面ABD;②求三棱錐C-ABD的體積;
(Ⅱ) 求AC與平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等腰△ABC的底邊AB=6
6
,高CD=3,點E是線段BD上異于點B,D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上高縣模擬)如圖,等腰△ABC的底邊AB=6,高CD=3,點E是線段BD上異于點B、D的動點,點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,記BE=x,V(x)表示四棱錐P-ACFE的體積.
(1)證明:CD⊥平面APE;
(2)設G是AP的中點,試判斷DG與平面PCF的關系,并證明;
(3)當x為何值時,V(x)取得最大值.

查看答案和解析>>

同步練習冊答案