已知幾何體的三視圖如下,試求它的表面積和體積.單位:cm.
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:三視圖中長(zhǎng)對(duì)正,高對(duì)齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,該幾何體為正三棱柱.
解答: 解:由圖可知此正三棱柱的高為2,底面正三角形的高為2
3
,可求得底面邊長(zhǎng)為4,
所以V=Sh=
1
2
×4×2
3
×2=8
3
(CM3)
;
S表面=2S底面+S側(cè)面
=2×
1
2
×4×2
3
+3×4×2
=8
3
+24(cm2).
點(diǎn)評(píng):三視圖中長(zhǎng)對(duì)正,高對(duì)齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,本題考查了學(xué)生的空間想象力,識(shí)圖能力及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向平面區(qū)域Ω={(x,y)|-
π
4
≤x≤
π
4
,0≤y≤1|}
內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落在曲線(xiàn)y=cos2x下方的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)x2+y2=1經(jīng)過(guò)φ:
x′=3x
y′=4y
變換后,得到的新曲線(xiàn)的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2+bx+c=0,設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù).求方程x2+bx+c=0有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項(xiàng)和,給出下列命題:
①給定n(n≥2,且n∈N*),對(duì)于一切k∈N*(k<n),都有an-k+an+k=2an成立;
②存在k∈N*,使得ak-ak+1與a2k+1-a2k-3同號(hào);
③若d>0.且S3=S8,則S5與S6都是數(shù)列{Sn}中的最小項(xiàng)
④點(diǎn)(1,
S1
1
),(2,
S2
2
),(3,
S3
3
),…,(n,
Sn
n
)(n∈N*),…,在同一條直線(xiàn)上.
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將十進(jìn)制數(shù)524轉(zhuǎn)化為八進(jìn)制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(mcosθ,-
2
),
b
=(1,
2
2
n+sinθ)且
a
b

(1)若m=
2
,n=1,求sin(θ-
π
4
)的值;
(2)m=
2
且θ∈(0,
π
2
),求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:Sn是數(shù)列{an}的前n項(xiàng)和,其中an=
8n
(2n-1)2•(2n+1)
,計(jì)算S1,S2,S3,S4,得到S4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-1.
(1)判斷函數(shù)f(x)的奇偶性并用定義證明
(2)求函數(shù)的在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案