分析:(1)求出h(x)的定義域,在定義域內解不等式h′(x)>0,h′(x)>0即得單調區(qū)間;
(2)由(1)知h(x)
min=h(0)=0,則當x>-1時,f(x)≥g(x)恒成立,根據-1<x
1<0<x
2時及f(x)、g(x)的單調性可得0>f(x
1)>g(x
1),f(x
2)>g(x
2)>0,再應用不等式的性質即可得到結論;
(3)f
2(x)-xg(x)=ln
2(x+1)-
,令F(x)=ln
2(x+1)-
,利用導數求出F(x)的單調區(qū)間,根據最值得一不等式,由此可證明;
解答:解:(1)h(x)=f(x)-g(x)=ln(x+1)-
,x>-1,
h′(x)=
-
=
,
令h′(x)<0,得-1<x<0,則h(x)在(-1,0)上單調遞減;
令h′(x)>0,得x>0,則h(x)在(0,+∞)上單調遞增.
故h(x)的增區(qū)間為(0,+∞),減區(qū)間為(-1,0).
(2)由(1)知h(x)
min=h(0)=0,則當x>-1時,f(x)≥g(x)恒成立,
f′(x)=
>0,g′(x)=
>0,
則f(x),g(x)在(-1,+∞)上均單調遞增.
易知:0>f(x
1)>g(x
1),f(x
2)>g(x
2)>0,
則-f(x
2)g(x
1)>-f(x
1)g(x
2),
即f(x
1)g(x
2)>f(x
2)g(x
1).
(3)f
2(x)-xg(x)=ln
2(x+1)-
,
令F(x)=ln
2(x+1)-
,
F′(x)=
-
=
2(x+1)ln(x+1)-(x2+2x) |
(x+1)2 |
,
令G(x)=2(x+1)ln(x+1)-(x
2+2x),
則G′(x)=2ln(x+1)-2x,
令H(x)=2ln(x+1)-2x,則H′(x)=
-2=
,
當-1<x<0時,H′(x)>0,則H(x)在(-1,0)上單調遞增;
當x>0時,H′(x)<0,則H(x)在(0,+∞)上單調遞減,
故H(x)≤H(0)=0,即G′(x)≤0,則G(x)在(-1,+∞)上單調遞減;
當-1<x<0時,G(x)>G(0)=0,即F′(x)>0,則F(x)在(-1,0)上單調遞增;
當x>0時,G(x)<G(0)=0,
即F′(x)<0,則F(x)在(0,+∞)上單調遞減,
故F(x)≤F(0)=0,即f
2(x)≤xg(x).