【題目】如圖四棱錐中, 是梯形,ABCD, ,AB=PD=4,CD=2 ,MCD的中點(diǎn),NPB上一點(diǎn),且.

1)若MN平面PAD

2)若直線AN與平面PBC所成角的正弦值為,求異面直線AD與直線CN所成角的余弦值。

【答案】(1)見解析;(2).

【解析】試題分析

1由題意在,連接EN,DE結(jié)合條件可得四邊形DMNE是平行四邊形,故得MNDE,由線面平行的判定可得結(jié)論成立.(2過點(diǎn)DDHABH,則DHCD,建立空間直角坐標(biāo)系,利用直線AN的方向向量與平面PBC的法向量并結(jié)合條件可得,然后根據(jù)兩向量的夾角可得異面直線所成角的余弦值

試題解析

1)證明:當(dāng)

,連接ENDE,

ENAB,且,

MCD的中點(diǎn),CD=2,

,

ABCD

ENDM,EN=DM,

四邊形DMNE是平行四邊形,

MNDE,

平面PAD,MN平面PAD

MN∥平面PAD

2)如圖所示,過點(diǎn)DDHABH,則DHCDD為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)D- yz

D(0,0,0),M(0,1,0),C(0,2,0),B(2,2,0),A(2,-2,0),

P(0,0,4),

該平面PBC的法向量為,

則由

z=1,

該直線AN與平面PBC所成的角為,則

,

解得

設(shè)直線AD與直線CN所成角為,

所以直線AD與直線CN所成角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽活動(dòng). 為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)得分取正整數(shù),滿分為100分作為樣本樣本容量為進(jìn)行統(tǒng)計(jì). 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖圖中僅列出了得分在[50,60,[90,100]的數(shù)據(jù).

1求樣本容量和頻率分布直方圖中的,的值;

2在選取的樣本中,從競(jìng)賽成績(jī)是80分以上含80分的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的3名同學(xué)中得分在[80,90的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過拋物線與坐標(biāo)軸的三個(gè)交點(diǎn).

(1)求圓的方程;

(2)經(jīng)過點(diǎn)的直線與圓相交于兩點(diǎn),若圓,兩點(diǎn)處的切線互相垂直,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,分別為橢圓的左、右焦點(diǎn).動(dòng)直線過點(diǎn),且與橢圓相交于,兩點(diǎn)(直線軸不重合).

(1)若點(diǎn)的坐標(biāo)為,求點(diǎn)坐標(biāo);

(2)點(diǎn),設(shè)直線的斜率分別為,,求證:;

(3)求面積最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)Fx=min{2|x1|x22ax+4a2},

其中min{p,q}=

)求使得等式Fx=x22ax+4a2成立的x的取值范圍;

)()求Fx)的最小值ma);

)求Fx)在區(qū)間[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若過點(diǎn)P1,t)存在3條直線與曲線相切,求t的取值范圍__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形平面.

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若是偶函數(shù),求的值;

2)若存在,使得成立,求實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),若有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案