【題目】已知橢圓 過點(diǎn),且兩個(gè)焦點(diǎn)的坐標(biāo)分別為, .

(1)求的方程;

(2)若, , 上的三個(gè)不同的點(diǎn), 為坐標(biāo)原點(diǎn),且,求證:四邊形的面積為定值.

【答案】(1) ;(2)證明見解析.

【解析】試題分析】(1)通過橢圓的定義求得,,由此求得,進(jìn)而求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理,代入,利用弦長(zhǎng)公式求得,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線的距離,由此求得四邊形的面積.

試題解析】

(1)由已知得,

,則的方程為;

(2)當(dāng)直線的斜率不為零時(shí),可設(shè)代入得:

設(shè),則

,

設(shè),由,得

∵點(diǎn)在橢圓上,∴,即,∴,

,

原點(diǎn)到直線的距離為.

∴四邊形的面積: .

當(dāng)的斜率為零時(shí),四邊形的面積,

∴四邊形的面積為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列,等差數(shù)列滿足,且的等比中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值3和最小值.

(1)求實(shí)數(shù)的值;

(2)設(shè),若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,若△ABC的周長(zhǎng)為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進(jìn)而根據(jù)ABC的周長(zhǎng),聯(lián)立方程組,可求出a的值.

根據(jù)正弦定理,可化為

∵△ABC的周長(zhǎng)為,

聯(lián)立方程組,

解得a=2.

故選:B

【點(diǎn)睛】

(1)在三角形中根據(jù)已知條件求未知的邊或角時(shí),要靈活選擇正弦、余弦定理進(jìn)行邊角之間的轉(zhuǎn)化,以達(dá)到求解的目的.

(2)求角的大小時(shí),在得到角的某一個(gè)三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點(diǎn)容易被忽視,解題時(shí)要注意.

型】單選題
結(jié)束】
7

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,除收費(fèi)10元之外,超過的部分,每超出(不足,按計(jì)算)需再收5元.

該公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

(1)某人打算將三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過30元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過150件,工資100元,目前前臺(tái)有工作人員3人,那么,公司將前臺(tái)工作人員裁員1人對(duì)提高公司利潤(rùn)是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C的離心率為,右準(zhǔn)線方程為

求橢圓C的標(biāo)準(zhǔn)方程;

已知斜率存在且不為0的直線l與橢圓C交于AB兩點(diǎn),且點(diǎn)A在第三象限內(nèi)為橢圓C的上頂點(diǎn),記直線MA,MB的斜率分別為,

若直線l經(jīng)過原點(diǎn),且,求點(diǎn)A的坐標(biāo);

若直線l過點(diǎn),試探究是否為定值?若是,請(qǐng)求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),過拋物線的焦點(diǎn)的直線與該拋物線交于兩點(diǎn), 面積的最小值為2

1)求拋物線的標(biāo)準(zhǔn)方程;

2)試問是否存在定點(diǎn),過點(diǎn)的直線與拋物線交于兩點(diǎn),當(dāng)三點(diǎn)不共線時(shí),使得以為直徑的圓必過點(diǎn).若存在,求出所有符合條件的點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .

求證:(1)直線DE平面A1C1F

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

同步練習(xí)冊(cè)答案