橢圓=1的離心率 e =, 則k的值是             
、 4或-
解:因為橢圓=1的離心率 e =,由于焦點位置不定,因此要分類討論得到k的值由兩個,且為4或-
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,橢圓的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標(biāo)平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與橢圓交于兩點,已知,若且橢圓的離心率,又橢圓經(jīng)過點,為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)

如圖,在平面直角坐標(biāo)系中,已知點為橢圓的右頂點, 點,點在橢
圓上, .

(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;
(3)是否存在分別以為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點軸的非負(fù)半軸上,點到短
軸端點的距離是4,橢圓上的點到焦點距離的最大值是6.
(1)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(2)若為焦點關(guān)于直線的對稱點,動點滿足,問是否存在一個定點,使到點的距離為定值?若存在,求出點的坐標(biāo)及此定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)是橢圓上的一點,為焦點,,則
的面積為(  )
A.B.C.D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為(  )
A.-2B.2 C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系內(nèi)已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴大到原來的倍后得到點Q(x,y),且滿足·="1."
(1)求動點P所在曲線C的方程;
(2)過點B作斜率為-的直線L交曲線C于M、N兩點,且++=,試求△MNH的面積.

查看答案和解析>>

同步練習(xí)冊答案