【題目】如圖,PA垂直于矩形ABCD所在的平面,E、F分別是AB、PD的中點,∠ADP=45°.

(1)求證:AF∥平面PCE.

(2)求證:平面PCD⊥平面PCE.

(3)若AD=2,CD=3,求點F到平面PCE的距離.

【答案】(1)詳見解析(2)詳見解析(3)

【解析】

試題分析:(1)關鍵是證明AF與平面PEC內的一條直線平行,為此可取PC的中點G,論證AFEG;(2)可轉化為證明線面垂直;(3)可以充分運用(2)的結論,結合線段比例關系求解點F到平面PCE的距離

試題解析:(1)證明:設M為PC中點,連接ME、MF.

則MF CD,MF= CD,AECD,AE=CD

∴MFAE,MF=AE∴四邊形AEMF為平行四邊形.…………2分

∴AF∥ME,又∵ME平面PCE,AF平面PCE

∴AF∥平面PCE. …………4分

(2)證明:∵PA⊥平面ABCD,∠PDA=45°,

∴△PAD為等腰直角三角形,∵PF=FD,∴AF⊥PD,又∵PA⊥平面ABCD,PA平面PAD,

∴平面PAD⊥平面ABCD. …………6分

∵平面PAD∩平面ABCD=AD,

CD⊥AD,CD平面ABCD.

∴CD⊥平面PAD,∴AF⊥CD,

又∵PD∩CD=D,∴AF⊥平面PCD.

∵EM∥AF,

∴EM⊥平面PCD.

∵EM平面PCE,

∴平面PCE⊥平面PCD. …………8分

(3)過點F作FG⊥PC,交PC于G,∵平面PCE⊥平面PCD,∴FG⊥平面PCE,即FG為點F到平面PCE的距離.…………10分

在Rt△PCD中,PD=2,PC=.

∵△PFG∽△PCD,∴,

∴FG=.…………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,且點在函數(shù)的圖象上.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產甲乙兩種產品均需用A,B兩種原料,已知生產1噸每種產品需原料及每天原料的可用限額如表所示,如果生產1噸甲、乙產品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為

A.12萬元 B.16萬元

C.17萬元 D.18萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1在區(qū)間上畫出函數(shù)的圖象;

2設集合,試判斷集合之間的關系并給出證明;

3求證在區(qū)間,的圖象位于函數(shù)圖象的上方

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為原點,且與直線相切.

(1)求圓的方程;

(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在軸正半軸上的圓與直線相切,與軸交于兩點,且.

(1)求圓的標準方程;

(2)過點的直線與圓交于不同的兩點,若設點的重心,當的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班一次數(shù)學考試成績頻率分布直方圖如圖所示,數(shù)據分組依次為,已知成績大于等于分的人數(shù)為人,現(xiàn)采用分層抽樣的方式抽取一個容量為的樣本.

(1)求每個分組所抽取的學生人數(shù);

(2)從數(shù)學成績在的樣本中任取人,求恰有人成績在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且, .

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點, 若點,

1)求的值;

2)若直線經過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

同步練習冊答案