【題目】某校高一某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(Ⅲ)若規(guī)定:75(包含75分)分以上為良好,90分(包含90分)以上為優(yōu)秀,要從分?jǐn)?shù)在良好以上的試卷中任取兩份分析學(xué)生失分情況,設(shè)在抽取的試卷中,分?jǐn)?shù)為優(yōu)秀的試卷份數(shù)為X,求X的概率分布列及數(shù)學(xué)期望.

【答案】解:(Ⅰ)由頻率分布直方圖得分?jǐn)?shù)在[50,60)的頻率為0.008×10=0.08,
由莖葉圖得分類在[50,60)的人數(shù)為2人,
∴全班人數(shù)為: =25人.
(Ⅱ)由莖葉圖得分?jǐn)?shù)在[80,90)之間的頻數(shù)為:
25﹣2﹣7﹣10﹣2=4人,
∵成績(jī)?yōu)閇80,90)間的頻數(shù)為4,
∴頻率分布直方圖中[80,90)間的矩形的高為: =0.016.
(Ⅲ)由已知得X的可能取值為0,1,2,
由莖葉圖知分?jǐn)?shù)在良好以上有11人,其中分?jǐn)?shù)為優(yōu)秀有2人,
∴P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
∴X的分布列為:

X

0

1

2

P

E(X)= =
【解析】(Ⅰ)由頻率分布直方圖能求出分?jǐn)?shù)在[50,60)的頻率,由莖葉圖得分類在[50,60)的人數(shù),由此能求出全班人數(shù).(Ⅱ)由莖葉圖能求出分?jǐn)?shù)在[80,90)之間的頻數(shù),由此能求出頻率分布直方圖中[80,90)間的矩形的高.(Ⅲ)由已知得X的可能取值為0,1,2,由莖葉圖知分?jǐn)?shù)在良好以上有11人,其中分?jǐn)?shù)為優(yōu)秀有2人,由此能求出X的分布列和E(X).
【考點(diǎn)精析】掌握頻率分布直方圖和離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若曲線上的點(diǎn)到直線的最大距離為6,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路

(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(zhǎng)(精確到米)

(2)若該扇形的半徑為,已知某老人散步,從沿走到,再?gòu)?/span>沿走到,試確定的位置,使老人散步路線最長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形所在平面與以為直徑的圓所在平面垂直,中點(diǎn),是圓周上一點(diǎn),且,,

1)求異面直線所成角的余弦值;

2)設(shè)點(diǎn)是線段上的點(diǎn),且滿足,若直線平面,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)P作圓O的割線PBA與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線與AE、BE分別交于點(diǎn)C、D,其中∠AEB=30°.

(1)求證:
(2)求∠PCE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,河北等8省公布了高考改革綜合方案將采取“3+1+2”模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門.為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對(duì)高一一年來(lái)的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.

(1)若甲同學(xué)隨機(jī)選擇3門功課,求他選到物理、地理兩門功課的概率;

(2)試根據(jù)莖葉圖分析甲同學(xué)應(yīng)在物理和歷史中選擇哪一門學(xué)科?并說(shuō)明理由;

(3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(jī)(分)與班級(jí)平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計(jì)數(shù)據(jù)如下表所示,試求當(dāng)班級(jí)平均分為50分時(shí),其物理考試成績(jī).

參考數(shù)據(jù): ,,,.

參考公式:,(計(jì)算時(shí)精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線與橢圓交于、兩點(diǎn)是以為直角頂點(diǎn)的等腰直角三角形,則橢圓的離心率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的右焦點(diǎn)F(1,0),過(guò)F的直線l與橢圓C交于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在點(diǎn)T,使得 為定值?若存在,求出點(diǎn)T坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案