【題目】《周髀算經》中給出了勾股定理的絕妙證明.下圖是趙爽弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.2(股勾)24朱實黃實弦實,化簡得勾222.若圖中勾股形的勾股比為,若向弦圖內隨機拋擲2000顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘顆數(shù)大約為( )(參考數(shù)據:

A.B.C.D.

【答案】B

【解析】

先求得大正方形和小長方形的面積,然后利用幾何概型對落在黃色圖形內的圖釘顆數(shù)進行估計.

由于圖中勾股形的勾股比為,不妨設為,

故大正方形的邊長為,小正方形的邊長為.

所以大正方形的面積為,小正方形的面積為.

設落在黃色圖形內的圖釘顆數(shù)大約為,

,

.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經過點,焦距為.

(1)求橢圓的標準方程;

(2)直線與橢圓交于不同的兩點、,線段的垂直平分線交軸交于點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經過點,離心率為. 

(1)求橢圓的標準方程;

(2)過坐標原點作直線交橢圓、兩點,過點的平行線交橢圓、兩點.是否存在常數(shù), 滿足?若存在,求出這個常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經過市場調查,某種商品在銷售中有如下關系:x(1≤x≤30,x∈N+)天的銷售價格(單位:/)f(x)=x天的銷售量(單位:)g(x)=a-x(a為常數(shù)),且在第20天該商品的銷售收入為1 200(銷售收入=銷售價格×銷售量).

(1)a的值,并求第15天該商品的銷售收入;

(2)求在這30天中,該商品日銷售收入y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) .

(1)當時,討論的單調性;

(2)若函數(shù)有兩個極值點,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為偶函數(shù),且當時,..給出下列關于函數(shù)的說法:①當時,;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.,兩點的直線方程為

B.關于直線的對稱點為

C.直線與兩坐標軸圍成的三角形的面積是2

D.經過點且在軸和軸上截距都相等的直線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, , 分別為, 的中點, , , .

(1)求證:直線平面;

(2)求證:直線 平面.

查看答案和解析>>

同步練習冊答案