【題目】已知橢圓:經(jīng)過點(diǎn),離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過坐標(biāo)原點(diǎn)作直線交橢圓于、兩點(diǎn),過點(diǎn)作的平行線交橢圓于、兩點(diǎn).是否存在常數(shù), 滿足?若存在,求出這個(gè)常數(shù);若不存在,請說明理由.
【答案】(1);(2).
【解析】
(1)由題意可得,解得a2=12,b2=8,即可求出橢圓方程,
(2)設(shè)出直線l的方程為x=my+2,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,求出|AB|,再設(shè)直線x=my,代入橢圓方程,化簡可得|OP|,再由計(jì)算即可得到所求常數(shù)λ.
(1)由題意可得,解得a2=12,b2=8,c2=4,
故橢圓C的方程為1,
(2)設(shè)直線AB的方程為x=my+2,A(x1,y1),B(x2,y2),
由
得(2m2+3)y2+8my﹣16=0,
即有y1+y2,y1y2,
|AB|8,
設(shè)P(x3,y3),Q(x4,y4),
由x=my代入橢圓方程可得
消去x,并整理得y2,
∴x2=m2,
∴|OP|2,
∵|AB|=λ|OP|2,
∴8λ,
∴λ
故存在常數(shù)λ,使得|AB|=λ|OP|2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, 平面, .過的平面交于點(diǎn),交于點(diǎn).
(l)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
時(shí)間代號 | 1 | 2 | 3 | 4 | 5 | 6 |
儲蓄存款(千億元) | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求關(guān)于的回歸方程,并預(yù)測該地區(qū)2019年的人民幣儲蓄存款(用最簡分?jǐn)?shù)作答).
(2)在含有一個(gè)解釋變量的線性模型中,恰好等于相關(guān)系數(shù)的平方,當(dāng)時(shí),認(rèn)為線性回歸模型是有效的,請計(jì)算并且評價(jià)模型的擬合效果(計(jì)算結(jié)果精確到).
附:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(1)畫出函數(shù)f(x),x∈R剩余部分的圖象,并根據(jù)圖象寫出函數(shù)f(x),x∈R的單調(diào)區(qū)間;(只寫答案)
(2)求函數(shù)f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下圖是趙爽弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).由2勾股(股勾)24朱實(shí)黃實(shí)弦實(shí),化簡得勾2股2弦2.若圖中勾股形的勾股比為,若向弦圖內(nèi)隨機(jī)拋擲2000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于古典概型的說法中正確的是( )
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
②每個(gè)事件出現(xiàn)的可能性相等;
③每個(gè)基本事件出現(xiàn)的可能性相等;
④基本事件的總數(shù)為n,隨機(jī)事件A若包含k個(gè)基本事件,則.
A. ②④ B. ③④ C. ①④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com