【題目】如圖, 是邊長(zhǎng)為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析(2)存在點(diǎn)且滿足條件.
【解析】試題分析:(1)根據(jù),結(jié)合面面平行的判定定理可知兩個(gè)平面平行;(2)先求出整個(gè)幾何體的體積.假設(shè)存在一點(diǎn),過(guò)作交于,連接,設(shè),求得幾何體的體積,將其分割成兩個(gè)三棱錐,利用表示出兩個(gè)三棱錐的高,再利用體積建立方程,解方程組求得的值.
試題解析:
解:
(1)∵平面, 平面,
∴,∴平面,
∵是正方形, ,∴平面,
∵, 平面, 平面,∴平面平面.
(2)假設(shè)存在一點(diǎn),過(guò)作交于,連接,
,
設(shè),則,
設(shè)到的距離為,則, ,
∴,解得,即存在點(diǎn)且滿足條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生社團(tuán)心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽(tīng)課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)時(shí),曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時(shí)學(xué)習(xí)效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中且.
(Ⅰ)討論的單調(diào)區(qū)間;
(Ⅱ)若直線的圖象恒在函數(shù)圖像的上方,求的取值范圍;
(Ⅲ)若存在,,使得,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)滿足的一切的值,都有,求實(shí)數(shù)的取值范圍;
(3)若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱中, , , , ,點(diǎn)是的中點(diǎn).
(1)求證: 平面;
(2)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,已知四棱錐中,底面為菱形,平面,,,分別是,的中點(diǎn).
(I)證明:平面;
(II)取,在線段上是否存在點(diǎn),使得與平面所成最大角的正切值為,若存在,請(qǐng)求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓?jiān)┊?dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購(gòu)者一次性購(gòu)物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了1月1日100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.
(I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;
(II)對(duì)這100名網(wǎng)購(gòu)者進(jìn)一步調(diào)查顯示:購(gòu)物金額在2000元以上的購(gòu)物者中網(wǎng)齡3年以上的有35人,
購(gòu)物金額在2000元以下(含2000元)的購(gòu)物者中網(wǎng)齡不足3年的有20人,請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并據(jù)
此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在3年以上有關(guān)?
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);
(2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若是奇函數(shù),且在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的標(biāo)準(zhǔn)方程是
(Ⅰ)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)直線過(guò)已知拋物線C的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為A、B,求線段AB的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com