【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當天全天的成交金額為315.5億元.為了了解網購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網購者的網購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網購者進一步調查顯示:購物金額在2000元以上的購物者中網齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)

此判斷能否在犯錯誤的概率不超過0.025的前提下認為網購金額超過2000元與網齡在3年以上有關?

參考數(shù)據(jù):

參考公式:,其中.

【答案】(I;(II列聯(lián)表見解析,犯錯誤的概率不超過的前提下認為網購金額超過元與網齡在年以上有關.

【解析】

試題分析:I以下頻率為,所以網購金額在的頻率為,即,且,從而 ,,由此可畫出頻率分布直方圖;II)根據(jù)數(shù)據(jù)填寫好表格,代入公式計算得,能在犯錯誤的概率不超過的前提下認為網購金額超過元與網齡在年以上有關.

試題解析:

I)因為網購金額在2000元以上(不含2000元)的頻率為0.4,

所以網購金額在的頻率為,

,且

從而 ,,相應的頻率分布直方圖如圖3所示:

II)相應的列聯(lián)表為:

由公式,

因為

所以據(jù)此列聯(lián)表判斷,在犯錯誤的概率不超過0.025的前提下認為網購金額超過2000元與網齡在3年以上有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

時,求函數(shù)的單調區(qū)間;

若函數(shù)的圖象在點處的切線的傾斜角為,函數(shù)當且僅當在處取得極值,其中的導函數(shù),求取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形中,分別在上,且,沿將四邊形折成四邊形,使點在平面上的射影在直線上,且.

1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是邊長為3的正方形, 平面, 平面 .

(1)證明:平面平面;

(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點、分別為邊、的中點,點是線段上的動點.

(1)求證:

(2)求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上為增函數(shù),,為常數(shù), .

(1)的值;(2)上為單調函數(shù),的取值范圍;

(3),若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1PBC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________寫出所有正確命題的編號。

時,S為四邊形

時,S為等腰梯形

時,S的交點R滿足

時,S為六邊形

時,S的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH平面CDE;

(2)若CD=2,DB=4,求四棱錐F—ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù)自然對數(shù)的底數(shù),

求曲的切線方程;

最大值

,其中導函數(shù),證明:對任意,

查看答案和解析>>

同步練習冊答案