【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點分別為邊、的中點,點是線段上的動點.

(1)求證:;

(2)求三棱錐的體積的最大值.

【答案】(1)見解析;(2)

【解析】【試題分析】(1)依據(jù)題設(shè)條件,運用線面垂直的性質(zhì)定理推證;(2)借助題設(shè)條件,運用三棱錐的體積公式建立目標(biāo)函數(shù),通過探求函數(shù)的變量之間的聯(lián)系分析探求最大值:

(1)證明:連接、相交于點

因為四邊形為正方形,所以

又因為平面平面,平面平面,

所以平面

平面,所以

因為四邊形為菱形,所以

因為,所以平面

因為、分別為、的中點,所以,則平面

平面,所以

(2)解:在菱形中,由,得. 

又因為,所以,

因為平面,即平面,所以

顯然,當(dāng)點與點重合時,取最大值2,此時

即三棱錐的體積的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩組共抽取4名工人進行技術(shù)考核.

(1)求從甲、乙兩組各抽取的人數(shù);

(2)求從甲組抽取的工人中恰有1名女工人的概率;

(3)求抽取的4名工人中恰有2名男工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍;

(2)令,是否存在實數(shù),當(dāng)是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.

(3)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中, , , ,點的中點.

(1)求證: 平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線,又已知直線是參數(shù)),且直線與曲線交于兩點.

I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;

II)設(shè)定點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網(wǎng)購者進一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)

此判斷能否在犯錯誤的概率不超過0.025的前提下認為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 過點,離心率為,分別為左右焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若上存在兩個點,橢圓上有兩個點滿足三點共線,三點共線,且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1若函數(shù)處有極值,求函數(shù)的最大值;

2①是否存在實數(shù),使得關(guān)于的不等式上恒成立?若存在,求出的取值范圍;若不存在,說明理由;

②證明:不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線一點作兩條直線分別交拋物線于,,當(dāng)斜率存在且傾斜角互補時

值;

直線上的截距時,面積最大值

查看答案和解析>>

同步練習(xí)冊答案