【題目】已知橢圓 過(guò)點(diǎn),離心率為,分別為左右焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若上存在兩個(gè)點(diǎn),橢圓上有兩個(gè)點(diǎn)滿足三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,基本方法為待定系數(shù)法,根據(jù)題意可列兩個(gè)獨(dú)立條件,及,解得,(2)因?yàn)?/span>,所以,先根據(jù)拋物線定義可求焦點(diǎn)弦長(zhǎng),再根據(jù)直線與橢圓聯(lián)立方程組,結(jié)合韋達(dá)定理求弦長(zhǎng),最后根據(jù)一元函數(shù)解析式求值域
試題解析:(1)由題意得:,,得,則方程
因?yàn)闄E圓過(guò)點(diǎn),解得,所以,
所以橢圓方程為:.
(2)當(dāng)直線斜率不存在時(shí),直線的斜率為0,易得,,
當(dāng)直線斜率存在時(shí),設(shè)直線方程為:,與聯(lián)立得
令,則,,
因?yàn)?/span>,所以直線的方程為:
將直線與橢圓聯(lián)立得:,
令,,
由弦長(zhǎng)公式
所以四邊形的面積,令
上式
所以綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于,兩點(diǎn),且,求的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠經(jīng)過(guò)市場(chǎng)調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價(jià)格(單位:萬(wàn)元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價(jià)格為萬(wàn)元/噸時(shí),每天可售出該產(chǎn)品噸.
(1)求的值;
(2)若該產(chǎn)品的成本價(jià)格為萬(wàn)元/噸,當(dāng)銷售價(jià)格為多少時(shí),該產(chǎn)品每天的利潤(rùn)最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點(diǎn)、分別為邊、的中點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn).
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次研究性學(xué)習(xí)有“整理數(shù)據(jù)”、“撰寫報(bào)告”兩項(xiàng)任務(wù),兩項(xiàng)任務(wù)無(wú)先后順序,每項(xiàng)任務(wù)的完成相互獨(dú)立,互不影響.某班研究性學(xué)習(xí)有甲、乙兩個(gè)小組.根據(jù)以往資料統(tǒng)計(jì),甲小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為,乙小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為.若在一次研究性學(xué)習(xí)中,兩個(gè)小組完成任務(wù)項(xiàng)數(shù)相等.而且兩個(gè)小組完成任務(wù)數(shù)都不少于一項(xiàng),則稱該班為“和諧研究班”.
(1)若,求在一次研究性學(xué)習(xí)中,已知甲小組完成兩項(xiàng)任務(wù)的條件下,該班榮獲“和諧研究班”的概率;
(2)設(shè)在完成4次研究性學(xué)習(xí)中該班獲得“和諧研究班”的次數(shù)為,若的數(shù)學(xué)期望,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,P為BC的中點(diǎn),Q為線段上的動(dòng)點(diǎn),過(guò)點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號(hào))。
①當(dāng)時(shí),S為四邊形
②當(dāng)時(shí),S為等腰梯形
③當(dāng)時(shí),S與的交點(diǎn)R滿足
④當(dāng)時(shí),S為六邊形
⑤當(dāng)時(shí),S的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),設(shè),,其中,.
(1)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)記,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若方程有兩個(gè)小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體的棱長(zhǎng)為1,分別是棱,的中點(diǎn),過(guò)直線的平面分別與棱、交于,設(shè),,給出以下四個(gè)命題:
①四邊形為平行四邊形;
②若四邊形面積,,則有最小值;
③若四棱錐的體積,,則為常函數(shù);
④若多面體的體積,,則為單調(diào)函數(shù).
其中假命題為( )
A. ① ③ B. ② C. ③④ D. ④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com