【題目】正方體的棱長(zhǎng)為1,分別是棱,的中點(diǎn),過直線的平面分別與棱、交于,設(shè),給出以下四個(gè)命題:

四邊形為平行四邊形;

若四邊形面積,,有最小值;

若四棱錐的體積,則為常函數(shù);

若多面體的體積,,則為單調(diào)函數(shù).

其中假命題為( )

A. ① ③ B. ② C. ③④ D. ④

【答案】D

【解析】試題分析:①∵平面ADD′A′∥平面BCC′B′,∴EN∥MF,同理:FN∥EM,

四邊形EMFN為平行四邊形,故正確;

②MENF的面積s=fx=EF×MN),

當(dāng)MBB′的中點(diǎn)時(shí),即x=時(shí),MN最短,此時(shí)面積最。收_;

連結(jié)AF,AMAN,則四棱錐則分割為兩個(gè)小三棱錐,

它們以AEF為底,以M,N分別為頂點(diǎn)的兩個(gè)小棱錐.因?yàn)槿切?/span>AEF的面積是個(gè)常數(shù).

M,N到平面AEF的距離和是個(gè)常數(shù),所以四棱錐C'-MENF的體積V為常數(shù)函數(shù),故正確.

多面體ABCD-MENF的體積V=hx=VABCD-A′B′C′D′=為常數(shù)函數(shù),故錯(cuò)誤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 過點(diǎn),離心率為,分別為左右焦點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若上存在兩個(gè)點(diǎn),橢圓上有兩個(gè)點(diǎn)滿足三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線上,且.

(1)求證:平面

(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線一點(diǎn)作兩條直線分別交拋物線于,當(dāng)斜率存在且傾斜角互補(bǔ)時(shí)

值;

直線上的截距時(shí),面積最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)為常數(shù), 的一個(gè)零點(diǎn)是,函數(shù)是自然對(duì)數(shù)的底數(shù), 設(shè)函數(shù)

1過點(diǎn)坐標(biāo)原點(diǎn)作曲線的切線, 證明切點(diǎn)的橫坐標(biāo)為

2,若函數(shù)在區(qū)間上是單調(diào)函數(shù), 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,圓

(1)若過點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;

(2)圓是以1為半徑,圓心在圓上移動(dòng)的動(dòng)圓 ,若圓上任意一點(diǎn)分別作圓 的兩條切線,切點(diǎn)為,求的取值范圍;

(3)若動(dòng)圓同時(shí)平分圓的周長(zhǎng)、圓的周長(zhǎng),則動(dòng)圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其最小正周期為

1在區(qū)間上的減區(qū)間

2將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍縱坐標(biāo)不變,再將所得的圖象向右平移個(gè)單位,得到函數(shù)的圖象若關(guān)于的方程在區(qū)間上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題實(shí)數(shù)滿足其中,命題實(shí)數(shù)滿足

1,且為真,求實(shí)數(shù)的取值范圍;

2的充分不必要條件,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),已知橢圓的離心率為,拋物線的準(zhǔn)線方程為

1求橢圓和拋物線的方程;

2設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若在以為直徑的圓的外部,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案