【題目】已知二次函數(shù)為常數(shù), 的一個(gè)零點(diǎn)是,函數(shù)是自然對數(shù)的底數(shù), 設(shè)函數(shù)

1過點(diǎn)坐標(biāo)原點(diǎn)作曲線的切線, 證明切點(diǎn)的橫坐標(biāo)為;

2,若函數(shù)在區(qū)間上是單調(diào)函數(shù), 的取值范圍

【答案】1證明見解析;2

【解析】

試題分析:1根據(jù)題意可得,再化簡,求導(dǎo)結(jié)合導(dǎo)數(shù)的幾何意義求解證明;2化簡求導(dǎo)得,再令從而由的正負(fù)確定函數(shù)的正負(fù),進(jìn)而確定的正負(fù),得到的單調(diào)性,從而求解

試題解析:解:1是二次函數(shù)的一個(gè)零點(diǎn),。

設(shè)切點(diǎn)為則切線的斜率。

整理得顯然,是這個(gè)方程的解。

上是增函數(shù),

則方程有唯一實(shí)數(shù)解,故

,

設(shè)

易知上是減函數(shù),從而

當(dāng)時(shí),在區(qū)間上是增函數(shù)

上恒成立,即上恒成立

在區(qū)間上是減函數(shù)。則滿足題意

當(dāng),即時(shí),設(shè)函數(shù)的唯一零點(diǎn)為,

上遞增,在上遞減。

內(nèi)有唯一一個(gè)零點(diǎn),

當(dāng)時(shí),,當(dāng)遞增,與在區(qū)間上是單調(diào)函數(shù)矛盾。

不合題意

綜合①②得,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次研究性學(xué)習(xí)有整理數(shù)據(jù)、撰寫報(bào)告兩項(xiàng)任務(wù),兩項(xiàng)任務(wù)無先后順序,每項(xiàng)任務(wù)的完成相互獨(dú)立,互不影響某班研究性學(xué)習(xí)有甲、乙兩個(gè)小組根據(jù)以往資料統(tǒng)計(jì),甲小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為,乙小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為若在一次研究性學(xué)習(xí)中,兩個(gè)小組完成任務(wù)項(xiàng)數(shù)相等而且兩個(gè)小組完成任務(wù)數(shù)都不少于一項(xiàng),則稱該班為和諧研究班

1,求在一次研究性學(xué)習(xí)中,已知甲小組完成兩項(xiàng)任務(wù)的條件下,該班榮獲和諧研究班的概率;

2設(shè)在完成4次研究性學(xué)習(xí)中該班獲得和諧研究班的次數(shù)為,若的數(shù)學(xué)期望,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中是實(shí)數(shù)設(shè)為該函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為,且

1求的單調(diào)區(qū)間和極值;

2,函數(shù)的圖像在點(diǎn)處的切線互相垂直,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積為

1求橢圓的方程;

2設(shè)橢圓的左、右頂點(diǎn)分別為、,過點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫度與實(shí)驗(yàn)每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)

選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

若選取的是12月112月5日的兩組數(shù)據(jù),請根據(jù)12月2日12月4日的數(shù)據(jù),求關(guān)線性回歸方程;

性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為1,分別是棱的中點(diǎn),過直線的平面分別與棱交于,設(shè),給出以下四個(gè)命題:

四邊形為平行四邊形;

若四邊形面積,,有最小值;

若四棱錐的體積,,則為常函數(shù);

若多面體的體積,,則為單調(diào)函數(shù).

其中假命題為( )

A. ① ③ B. ② C. ③④ D. ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

(I)求直方圖中的值;

(II)求月平均用電量的眾數(shù)和中位數(shù);

(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線l1:axby+4=0,l2:(a1)x+y+b=0. 求滿足下列條件的a,b值.

)l1l2且l1過點(diǎn)(3,1);

)l1l2且原點(diǎn)到這兩直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三()班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.

(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并估計(jì)該班的平均分?jǐn)?shù);

(2)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

同步練習(xí)冊答案