【題目】農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫度與實驗每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

農科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗

選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

若選取的是12月112月5日的兩組數(shù)據(jù),請根據(jù)12月2日12月4日的數(shù)據(jù),求線性回歸方程

性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

【答案】;;可靠

【解析】

試題分析:1先確定基本事件總數(shù),事件的反面比較簡單,即相鄰兩組數(shù)據(jù)的情況有種;2利用數(shù)據(jù)代入公式得回歸方程的系數(shù),即得回歸方程;3利用回歸方程算出數(shù)據(jù)的估計值,判斷誤差即可

試題解析:抽到不相鄰兩組數(shù)據(jù)為事件,因為從數(shù)據(jù)中選取數(shù)據(jù)共有情況,每種情況是等可能出現(xiàn)的,其中抽到相鄰兩數(shù)據(jù)的情況有故選取的數(shù)據(jù)恰好是不相鄰的數(shù)據(jù)的概率是

數(shù)據(jù),求得

, ,由公式求得

關于線性回歸方程為

時,,同樣地,當時,,

以,該研究所得到的線性回歸方程是可靠的

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

I)若,求函數(shù)在點處的切線方程;

II)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

III)令是自然對數(shù)的底數(shù)),求當實數(shù)等于多少時,可以使函數(shù)取得最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,四邊形為直角梯形,,,, 平面平面.

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的頂點為坐標原點O,焦點F在軸正半軸上,準線與圓相切.

)求拋物線的方程;

)已知直線和拋物線交于點,命題若直線過定點(0,1),則 ,

請判斷命題的真假,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,點均在函數(shù)的圖象上.

(1)求證:數(shù)列為等差數(shù)列;

(2)設是數(shù)列的前項和,求使對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)為常數(shù), 的一個零點是,函數(shù)是自然對數(shù)的底數(shù), 設函數(shù)

1過點坐標原點作曲線的切線, 證明切點的橫坐標為

2,若函數(shù)在區(qū)間上是單調函數(shù), 的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學生分住在三個營區(qū),從在第一營區(qū),從在第二營區(qū),從在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經過點A(2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.

(1)求圓C的方程;

(2)若=2,求實數(shù)k的值;

(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,,,,,設中點,點在線段上,且

(1)求證:平面;

(2)設異面直線的夾角為,若,求的長.

查看答案和解析>>

同步練習冊答案