【題目】已知,.

I)若,求函數(shù)在點(diǎn)處的切線方程;

II)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

III)令是自然對數(shù)的底數(shù)),求當(dāng)實(shí)數(shù)等于多少時(shí),可以使函數(shù)取得最小值為3.

【答案】(I;(II;(III.

【解析】

試題分析:I當(dāng)時(shí),,,,.由點(diǎn)斜式可得切線方程為;II函數(shù)上是增函數(shù),導(dǎo)數(shù)恒為非負(fù)數(shù),分離參數(shù)得上恒成立.利用基本不等式求得右邊函數(shù)最小值為,所以;III,,對分成,三種情況討論最值的情況,進(jìn)而求得.

試題解析:

I)當(dāng)時(shí),,,

函數(shù)在點(diǎn)處的切線方程為.

II)函數(shù)上是增函數(shù),

上恒成立,

上恒成立.

,則,當(dāng)且僅當(dāng)時(shí),取=.

的取值范圍為.

III,.

(1)當(dāng)時(shí),,上單調(diào)遞減,

,(舍去).

(2)當(dāng)時(shí),,上恒成立,

上單調(diào)遞減,,,(舍去).

(3)當(dāng)時(shí),,令,則,令,則,

上單調(diào)遞減,在上單調(diào)遞增,

,滿足條件.

綜上所述,當(dāng)實(shí)數(shù)時(shí),使的最小值為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是12.

(1)求的解析式;

(2)是否存在自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合為函數(shù)的定義域,集合為不等式的解集.

(1)若,求

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點(diǎn).

(1)求證: 平面

(2)設(shè)的中點(diǎn), 的重心,求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:方程沒有實(shí)數(shù)根(),命題q:定義域?yàn)镽,若命題p為真命題,p 為假命題,求k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次研究性學(xué)習(xí)有整理數(shù)據(jù)、撰寫報(bào)告兩項(xiàng)任務(wù),兩項(xiàng)任務(wù)無先后順序,每項(xiàng)任務(wù)的完成相互獨(dú)立,互不影響某班研究性學(xué)習(xí)有甲、乙兩個(gè)小組根據(jù)以往資料統(tǒng)計(jì),甲小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為,乙小組完成研究性學(xué)習(xí)兩項(xiàng)任務(wù)的概率都為若在一次研究性學(xué)習(xí)中,兩個(gè)小組完成任務(wù)項(xiàng)數(shù)相等而且兩個(gè)小組完成任務(wù)數(shù)都不少于一項(xiàng),則稱該班為和諧研究班

1,求在一次研究性學(xué)習(xí)中,已知甲小組完成兩項(xiàng)任務(wù)的條件下,該班榮獲和諧研究班的概率;

2設(shè)在完成4次研究性學(xué)習(xí)中該班獲得和諧研究班的次數(shù)為,若的數(shù)學(xué)期望,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側(cè)棱底面,,,的中點(diǎn).

)求直線所成角的余弦值;

)在側(cè)面內(nèi)找一點(diǎn),使,求N點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,ABAD∠BAD60°,E,F分別是APAD的中點(diǎn).

求證:(1)直線EF∥平面PCD;

2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫度與實(shí)驗(yàn)每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)

選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

若選取的是12月112月5日的兩組數(shù)據(jù),請根據(jù)12月2日12月4日的數(shù)據(jù),求關(guān)線性回歸方程

性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

查看答案和解析>>

同步練習(xí)冊答案