【題目】如圖,在四棱錐中,底面為矩形,側棱底面,,的中點.

)求直線所成角的余弦值;

)在側面內(nèi)找一點,使,求N點的坐標。

【答案】

【解析】

試題分析:)設ACBD=O,連OE,將PB平移到OE,根據(jù)異面直線所成角的定義可知EOA即為AC與PB所成的角或其補角,在AOE中,利用余弦定理求出此角的余弦值即可;()在面ABCD內(nèi)過D作AC的垂線交AB于F,連PF,設N為PF的中點,連NE,則NEDF,根據(jù)線面垂直的判定定理可知DF面PAC,從而NE面PAC

試題解析:)建立如圖所示的空間直角坐標系,則的坐標為

、、、、,

從而

的夾角為,則

所成角的余弦值為.

)由于點在側面內(nèi),故可設點坐標為,則

,由可得,

點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項是公差為的等差數(shù)列,偶數(shù)項是公差為的等差數(shù)列, 是數(shù)列的前項和,

(1)若,求;

(2)已知,且對任意的,有恒成立,求證:數(shù)列是等差數(shù)列;

(3)若,且存在正整數(shù),使得,求當最大時,數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數(shù)yf(x)-g(x)在區(qū)間[a,b]上至少有一個零點,則稱f(x)和g(x)在[a,b]上具有關系G

(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關系G,并說明理由;

(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關系G,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

I)若,求函數(shù)在點處的切線方程;

II)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

III)令,是自然對數(shù)的底數(shù)),求當實數(shù)等于多少時,可以使函數(shù)取得最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為,

(1)

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)五點法作出函數(shù)在一個周期內(nèi)的簡圖;

(2)求出函數(shù)的最大值及取得最大值時的x的值;

(3)求出函數(shù)在上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1若關于的方程在區(qū)間上有兩個不同的解

的取值范圍;

,求的取值范圍;

2設函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,四邊形為直角梯形,,,, 平面平面.

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學生分住在三個營區(qū),從在第一營區(qū),從在第二營區(qū),從在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為(

A. B.

C. D.

查看答案和解析>>

同步練習冊答案