【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點(diǎn).

(1)求證: 平面;

(2)設(shè)的中點(diǎn), 的重心,求證: 平面

【答案】(1)(2)證明見(jiàn)解析

【解析】試題分析:(1)要證線面垂直,就要證線線垂直,由題中已知條件首先有,另外一條直線可由平面,從而有,因此就有線面垂直;(2)要證線面平行,可證線線平行,也可先證面面平行,如連并延長(zhǎng)交,連接,由重心定義,中位線定理得, ,只要有兩個(gè)平行就可得到面面平行,從而證得結(jié)論線面平行.

試題解析:(1)由平面平面,得,

平面平面,

所以平面

2

并延長(zhǎng)交,連接,由的重心,得中點(diǎn),

中點(diǎn),得,

中點(diǎn),得,

因?yàn)?/span>平面,

平面,

平面平面,

所以平面平面,

因?yàn)?/span>平面,

所以平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 四棱錐中, 平面平面,為線段上一點(diǎn),的中點(diǎn)

1證明: 平面;

2求二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

是函數(shù)的極值點(diǎn),求的值;

在區(qū)間上單調(diào)遞增,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,向量,,且共線.

(1)求數(shù)列的通項(xiàng)公式;

(2)對(duì)任意,將數(shù)列中落入?yún)^(qū)間內(nèi)的項(xiàng)的個(gè)數(shù)記為,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數(shù)yf(x)-g(x)在區(qū)間[a,b]上至少有一個(gè)零點(diǎn),則稱f(x)和g(x)在[ab]上具有關(guān)系G

(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關(guān)系G,并說(shuō)明理由;

(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關(guān)系G,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長(zhǎng)到原來(lái)的2倍,得到曲線,又已知直線是參數(shù)),且直線與曲線交于兩點(diǎn).

I)求曲線的直角坐標(biāo)方程,并說(shuō)明它是什么曲線;

II)設(shè)定點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

I)若,求函數(shù)在點(diǎn)處的切線方程;

II)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

III)令是自然對(duì)數(shù)的底數(shù)),求當(dāng)實(shí)數(shù)等于多少時(shí),可以使函數(shù)取得最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)五點(diǎn)法作出函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖;

(2)求出函數(shù)的最大值及取得最大值時(shí)的x的值;

(3)求出函數(shù)在上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線與圓相切.

)求拋物線的方程;

)已知直線和拋物線交于點(diǎn),命題若直線過(guò)定點(diǎn)(0,1),則 ,

請(qǐng)判斷命題的真假,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案