【題目】如圖所示,在直三棱柱中, , , ,點的中點.

(1)求證: 平面

(2)求異面直線所成角的余弦值.

【答案】(1)證明見解析;(2)

【解析】試題分析:

(1)要證平行于平面,設(shè)的交點為只要證即可,這由中位線定理可得;

(2)由(1)只要求得即可得異面直線所成角.

試題解析:

(1)證明:設(shè)CB1C1B的交點為E,連接DE,又四邊形BCC1B1為正方形.

DAB的中點,EBC1的中點,∴DEAC1

DE平面CDB1,AC1平面CDB1,

AC1∥平面CDB1

(2)解:∵DEAC1,

∴∠CEDAC1B1C所成的角.

在△CED中,EDAC1,CDABCECB1=2,

cosCED

∴異面直線AC1B1C所成角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線的焦點, 若點,

1)求的值;

2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點.

(1),求證:;

(2),且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點在平面上的射影在直線上,且.

1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產(chǎn)品.

(1)求的值;

(2)若該產(chǎn)品的成本價格為萬元/噸,當(dāng)銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為3的正方形, 平面 平面, .

(1)證明:平面平面;

(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,點、分別為邊、的中點,點是線段上的動點.

(1)求證:;

(2)求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為1,PBC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________寫出所有正確命題的編號

當(dāng)時,S為四邊形

當(dāng)時,S為等腰梯形

當(dāng)時,S的交點R滿足

當(dāng)時,S為六邊形

當(dāng)時,S的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別為橢圓的左、右兩個焦點.
)若橢圓上的點兩點的距離之和等于6,寫出橢圓的方程和焦點坐標(biāo);
)設(shè)點是(1)中所得橢圓上的動點,求線段的中點M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案