【題目】已知圓 M與圓N:(x﹣ )2+(y+ )2=r2關(guān)于直線y=x對(duì)稱,且點(diǎn)D(﹣ , )在圓M上.
(1)判斷圓M與圓N的公切線的條數(shù);
(2)設(shè)P為圓M上任意一點(diǎn),A(﹣1, ),B(1, ),P,A,B三點(diǎn)不共線,PG為∠APB的平分線,且交AB于G,求證:△PBG與△APG的面積之比為定值.
【答案】
(1)解:由于點(diǎn)N( ,﹣ )關(guān)于直線y=x對(duì)稱點(diǎn)M(﹣ , ),
r=|ND|= ,故圓M的方程為:(x+ )2+(y﹣ )2= .
根據(jù)|MN|= = >2r,故兩圓相離,
∴圓M與圓N的公切線有4條.
(2)證明:設(shè)∠PAB=2α,則∠APG=∠BPG=α,∴△PBG與△APG的面積之比= .
設(shè)點(diǎn)P(x,y),則:(x+ )2+(y﹣ )2= .
PA2=(x+1)2+(y﹣ )2 =(x+1)2+ ﹣(x+ )2=﹣ x;
PB2=(x﹣1)2+(y﹣ )2 =(x﹣1)2+ ﹣(x+ )2=﹣ x;
∴ =2,即△PBG與△APG的面積之比=2.
【解析】(1)先求得點(diǎn)N關(guān)于直線y=x對(duì)稱點(diǎn)M的坐標(biāo),可得圓M的方程,再根據(jù)圓心距大于兩圓的半徑之和,可得兩圓相離,即可得出結(jié)論;(2)設(shè)∠PAB=2α,則∠APG=∠BPG=α,可得△PBG與△APG的面積之比= .設(shè)點(diǎn)P(x,y),求得PA2和 PB2的值,可得 的值,即為△PBG與△APG的面積之比.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),橢圓的左焦點(diǎn)為,右焦點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),且,直線與直線分別交于兩點(diǎn).
(1)求橢圓的方程及線段的長(zhǎng)度的最小值;
(2)是橢圓上一點(diǎn),當(dāng)線段的長(zhǎng)度取得最小值時(shí),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b是實(shí)數(shù),函數(shù)f(x)=x|x﹣a|+b.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函數(shù)f(x)在[﹣4,5]上恒有三個(gè)零點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知復(fù)平面內(nèi)平行四邊形ABCD中,點(diǎn)A對(duì)應(yīng)的復(fù)數(shù)為﹣1, 對(duì)應(yīng)的復(fù)數(shù)為2+2i, 對(duì)應(yīng)的復(fù)數(shù)為4﹣4i.
(Ⅰ)求D點(diǎn)對(duì)應(yīng)的復(fù)數(shù);
(Ⅱ)求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=2x3﹣3x2﹣12x+5在區(qū)間[0,3]上最大值與最小值分別是( )
A.5,﹣15
B.5,﹣4
C.﹣4,﹣15
D.5,﹣16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=1﹣nan(n∈N*)
(1)計(jì)算a1 , a2 , a3 , a4;
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足xf′(x)+2f(x)= ,且f(e)=
(Ⅰ)求f(x)的表達(dá)式
(Ⅱ)求函數(shù)f(x)在[1,e2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查為此將他們隨機(jī)編號(hào)為1,2,…,960,分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為9,若抽到的32人中,編號(hào)落入?yún)^(qū)間[1,450]的人做問卷A,編號(hào)落人區(qū)間[451,750]的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷C的人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
(1)若,求的值;
(2)令,把函數(shù)的圖象上每一點(diǎn)的橫坐標(biāo)都縮小為原來的一半(縱坐標(biāo)不變),再把所得圖象沿軸向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)的單調(diào)增區(qū)間即圖象的對(duì)稱中心.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com