【題目】已知直線:(為參數(shù)),曲線:(為參數(shù)).
(1)設(shè)與相交于兩點,求;
(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點P是曲線上的一個動點,求它到直線的距離的最大值.
【答案】(1);(2)
【解析】
(1)消去直線參數(shù)方程的參數(shù),求得直線的普通方程.消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程,聯(lián)立直線和曲線的方程求得交點的坐標(biāo),再根據(jù)兩點間的距離公式求得.(2)根據(jù)坐標(biāo)變換求得曲線的參數(shù)方程,由此設(shè)出點坐標(biāo),利用點到直線距離公式列式,結(jié)合三角函數(shù)最值的求法,求得到直線的距離的最大值.
(1)的普通方程為,的普通方程為,
聯(lián)立方程組,解得交點為,
所以=;
(2)曲線:(為參數(shù)).設(shè)所求的點為,
則到直線的距離.
當(dāng)時,取得最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在實數(shù)集上的奇函數(shù),為非正的常數(shù),且當(dāng)時,.若存在實數(shù),使得的定義域與值域都為,則實數(shù)的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線與直線平行.
(1)求實數(shù)的值;
(2)若函數(shù)在上恰有兩個零點,求實數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù),).以為極點,軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,,,,,平面平面ABC.
(1)求證:平面PBC;
(2)求二面角P-AC-B的余弦值;
(3)求直線BC與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某周末,鄭州方特夢幻王國匯聚了八方來客.面對該園區(qū)內(nèi)相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同.某統(tǒng)計機(jī)構(gòu)對園區(qū)內(nèi)的100位游客(這些游客只在兩個主題公園中二選一)進(jìn)行了問卷調(diào)查.調(diào)查結(jié)果顯示,在被調(diào)查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20人.
(1)根據(jù)題意,請將下面的列聯(lián)表填寫完整;
選擇“西游傳說” | 選擇“千古蝶戀” | 總計 | |
成年人 | |||
未成年人 | |||
總計 |
(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有的把握認(rèn)為選擇哪個主題公園與年齡有關(guān).
附參考公式與表:().
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個頂點為拋物線的焦點,點在橢圓上且,關(guān)于原點的對稱點為,過作的垂線交橢圓于另一點,連交軸于.
(1)求橢圓的方程;
(2)求證:軸;
(3)記的面積為的面積為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com