【題目】已知是定義在實(shí)數(shù)集上的奇函數(shù),為非正的常數(shù),且當(dāng)時(shí),.若存在實(shí)數(shù),使得的定義域與值域都為,則實(shí)數(shù)的取值范圍是()
A. B. C. D.
【答案】B
【解析】
由題意得出函數(shù)在上單調(diào)遞減,結(jié)合題意得出,由題意得出,兩式相加得出,可得出,從而可得出實(shí)數(shù)的取值范圍.
函數(shù)為上的奇函數(shù),則,適合.
當(dāng)且時(shí),函數(shù)為減函數(shù).
設(shè),則,,
此時(shí),,且該函數(shù)在上單調(diào)遞增,
所以,函數(shù)在實(shí)數(shù)集上單調(diào)遞減,
由題意可得,則點(diǎn)和點(diǎn)在函數(shù)的圖象上,且這兩點(diǎn)關(guān)于直線對(duì)稱.
若,則這兩點(diǎn)均為第二象限,都在直線的上方,不可能關(guān)于直線對(duì)稱;
若,則這兩點(diǎn)均為第四象限,都在直線的下方,不可能關(guān)于直線對(duì)稱.
因此,.
由,得,兩式相加得,
即,(舍去)或,則.
代入,得,,又,.
因此,實(shí)數(shù)的取值范圍是,故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時(shí)直線的方程;
(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)研機(jī)構(gòu),對(duì)本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對(duì)應(yīng)的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,在直角梯形中,AB∥CD,AB⊥BC,CD=2AB=2BC=4,過(guò)A點(diǎn)作AE⊥CD,垂足為E,現(xiàn)將ΔADE沿AE折疊,使得DE⊥EC.取AD的中點(diǎn)F,連接BF,CF,EF,如圖乙。
(1)求證:BC⊥平面DEC;
(2)求二面角C-BF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】荷花池中,有一只青蛙在成“品”字形的三片荷葉上跳來(lái)跳去(每次跳躍時(shí),均從一片荷葉跳到另一片荷葉),而且逆時(shí)針?lè)较蛱母怕适琼槙r(shí)針?lè)较蛱母怕实膬杀叮鐖D所示.假設(shè)現(xiàn)在青蛙在荷葉上,則跳三次之后停在荷葉上的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),證明函數(shù)是增函數(shù);
(2)是否存在實(shí)數(shù),使得只有唯一的正數(shù),當(dāng)時(shí)恒有:,若這樣的實(shí)數(shù)存在,試求、的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)小張三次射擊恰有兩次命中十環(huán)的概率,先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定2,4,6,8表示命中十環(huán),0,1,3,5,7,9表示未命中十環(huán),再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據(jù)此估計(jì),小張三次射擊恰有兩次命中十環(huán)的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線:(為參數(shù)),曲線:(為參數(shù)).
(1)設(shè)與相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)P是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com