【題目】如圖甲,在直角梯形中,AB∥CD,AB⊥BC,CD=2AB=2BC=4,過A點(diǎn)作AE⊥CD,垂足為E,現(xiàn)將ΔADE沿AE折疊,使得DE⊥EC.取AD的中點(diǎn)F,連接BF,CF,EF,如圖乙。
(1)求證:BC⊥平面DEC;
(2)求二面角C-BF-E的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)先證明DE⊥平面ABCE 可得DE⊥BC,結(jié)合BC⊥EC,可證BC⊥平面DEC;
(2)以點(diǎn)E為坐標(biāo)原點(diǎn),分別以EA,EC,ED為x,y,z軸建立空間坐標(biāo)系E-xyz,求出平面EFB和平面BCF的一個(gè)法向量,接著代入公式,可求得二面角C-BF-E的余弦值.
(1)證明:如圖,∵DE⊥EC,DE⊥AE,
∴DE⊥平面ABCE,
又∵BC平面ABCE,
∴DE⊥BC,
又∵BC⊥EC,DEEC=E,
∴BC⊥平面DEC.
(2)如圖,以點(diǎn)E為坐標(biāo)原點(diǎn),分別以EA,EC,ED為x,y,z軸建立空間坐標(biāo)系E-xyz,
∴E(0,0,0),C(0,2,0),B(2,2,0),D(0,0,2),A(2,0,0),F(1,0,1)
設(shè)平面EFB的法向量
由,
所以有
∴取,得平面EFB的一個(gè)法向量
設(shè)平面BCF的法向量為
由,
所以有
∴取,得平面BCF的一個(gè)法向量
設(shè)二面角C-BF-E的大小為
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用系統(tǒng)抽樣法從140名學(xué)生中抽取容量為20的樣本,將140名學(xué)生從1~140編號.按編號順序平均分成20組(1~7號,8~14號,…,134~140號),若第17組抽出的號碼為117,則第一組中按此抽樣方法確定的號碼是( )
A.7B.5C.4D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于給定的正整數(shù)k,若數(shù)列{an}滿足
=2kan對任意正整數(shù)n(n> k) 總成立,則稱數(shù)列{an} 是“P(k)數(shù)列”.
(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若,試求點(diǎn)的坐標(biāo);
(3)若點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)研機(jī)構(gòu),對本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對應(yīng)的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求的最大值和最小值;
(2)當(dāng)時(shí),證明:在上有且僅有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)(分別記為),且為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在實(shí)數(shù)集上的奇函數(shù),為非正的常數(shù),且當(dāng)時(shí),.若存在實(shí)數(shù),使得的定義域與值域都為,則實(shí)數(shù)的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),).以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com