在等差數(shù)列中,,公差為,其前項(xiàng)和為,在等比數(shù)列 中,,公比為,且,
(1)求
(2)設(shè)數(shù)列滿足,求的前項(xiàng)和

(1)(2).

解析試題分析:(1)求特殊數(shù)列(等差數(shù)列或等比數(shù)列)通項(xiàng)的基本方法就是待定系數(shù)法.本題中只需確定公差與公比,即只需列出兩個(gè)獨(dú)立條件就可解出. 解得,因此. (2)求數(shù)列前項(xiàng)和,首先先分析數(shù)列通項(xiàng)公式特點(diǎn). 由(1)可知,,所以,即是一個(gè)分式,可利用裂項(xiàng)相消法求和. 由,故
試題解析:解:(1)
                      4分
,.                      7分
(2)由(1)可知,,                   10分
所以             12分
14分
考點(diǎn):裂項(xiàng)相消法求和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),記,,
 .
(1)若,且對(duì)任意,三個(gè)數(shù)組成等差數(shù)列,求數(shù)列的通項(xiàng)公式.
(2)證明:數(shù)列是公比為的等比數(shù)列的充分必要條件是:對(duì)任意,三個(gè)數(shù)組成公比為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)求的前項(xiàng)和;
(3)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前n項(xiàng)和為,存在常數(shù)A,B,C,使得對(duì)任意正整數(shù)n都成立.
⑴若數(shù)列為等差數(shù)列,求證:3A B+C=0;
⑵若設(shè)數(shù)列的前n項(xiàng)和為,求;
⑶若C=0,是首項(xiàng)為1的等差數(shù)列,設(shè)數(shù)列的前2014項(xiàng)和為P,求不超過(guò)P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若等比數(shù)列滿足,,求數(shù)列的前項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等比數(shù)列,其前n項(xiàng)和為,且滿足,成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記,求數(shù)列前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正項(xiàng)數(shù)列滿足:,
(1)求通項(xiàng);
(2)若數(shù)列滿足,求數(shù)列的前和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的公差為,且.若設(shè)是從開(kāi)始的前項(xiàng)數(shù)列的和,即,如此下去,其中數(shù)列是從第開(kāi)始到第)項(xiàng)為止的數(shù)列的和,即
(1)若數(shù)列,試找出一組滿足條件的,使得: ;
(2)試證明對(duì)于數(shù)列,一定可通過(guò)適當(dāng)?shù)膭澐郑顾玫臄?shù)列中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列.試探索該數(shù)列中是否存在無(wú)窮整數(shù)數(shù)列
,使得為等比數(shù)列,如存在,就求出數(shù)列;如不存在,則說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案