【題目】已知cosx2cosx),2cosx,sinx),fx

1)把fx)的圖象向右平移個單位得gx)的圖象,求gx)的單調(diào)遞增區(qū)間;

2)當共線時,求fx)的值.

【答案】1)增區(qū)間;(2

【解析】

1)利用數(shù)量積運算性質(zhì)、倍角公式、和差公式可得:.把fx)的圖象向右平移個單位得gx)的圖象:gx1.再利用正弦函數(shù)的單調(diào)性即可得出gx)的增區(qū)間.

2)當共線時,可得tanx4.于是fx,即可得出.

1fx)=2cos2x+2sinxcosxcos2x+1+sin2x1

fx)的圖象向右平移個單位得gx)的圖象:gx11

2,解得x,kZ

gx)的增區(qū)間

2)∵當共線時,

4cos2xsinxcosx0

tanx4

fx)=2cos2x+2sinxcosx

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以原點為圓心,半徑為的圓 與直線相切.

(1)直線過點截圓所得弦長為求直線 的方程;

(2)設(shè)圓軸的正半軸的交點為,過點作兩條斜率分別為 的直線交圓兩點,且 ,證明:直線恒過一個定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 的中點, 是棱上的點, , , .

(Ⅰ)求證:平面平面;

(Ⅱ)若異面直線所成角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當a=3時,求A∩B;

(2)若a>0,且A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實數(shù),使得至少有一個,使成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩地相距150千米,某人開汽車以60千米/小時的速度從地到達地,在地停留1小時后再以50千米/小時的速度返回.

1)試把汽車離開地的距離(千米)表示為時間(小時)的函數(shù);

2)根據(jù)(1)中的函數(shù)表達式,求出汽車距離A100千米時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加;

②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;

③過定圓上一定點作圓的動弦,為原點,若,則動點的軌跡為橢圓;

④已知是橢圓的左焦點,設(shè)動點在橢圓上,若直線的斜率大于,則直線為原點)的斜率的取值范圍是.

A. ①②③ B. ①③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中

1)若是關(guān)于的不等式的解,求的取值范圍;

2)求函數(shù)上的最小值;

3)若對任意的,不等式恒成立,求的取值范圍;

4)當時,令,試研究函數(shù)的單調(diào)性,求在該區(qū)間上的最小值.

查看答案和解析>>

同步練習冊答案