證明:(Ⅰ)若a>b>c>d>0且a+d=b+c,求證:
d
+
a
b
+
c

(Ⅱ)已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1,求證:a、b、c、d中至少有一個是負(fù)數(shù).
考點:不等式的證明
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)利用分析法證明即可;
(Ⅱ)利用反證法進(jìn)行證明,假設(shè)a、b、c、d都是非負(fù)數(shù),找出矛盾即可.
解答: 證明:(Ⅰ)要證明
d
+
a
b
+
c

只需證明d+a+2
ad
<b+c+2
bc
,
∵a+d=b+c,
只需證明2
ad
<2
bc
,
只需證明ad<bc,
只需證明a(b+c-a)<bc,
只需證明ab-a2+ac-bc<0,
只需證明(a-b)(c-a)<0,
∵a>b>c,∴a-b>0,c-a<0,
∴(a-b)(c-a)<0,
綜上,
d
+
a
b
+
c

(Ⅱ)假設(shè)a、b、c、d都是非負(fù)數(shù),
∵a+b=c+d=1,
∴(a+b)(c+d)=1.
∴ac+bd+bc+ad=1≥ac+bd.
這與ac+bd>1矛盾.
∴假設(shè)不成立,即a、b、c、d中至少有一個負(fù)數(shù).
點評:本題考查不等式的證明,考查分析法、反證法,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M是△ABC內(nèi)的一點,且
AB
AC
=2
3
,∠BAC=
π
6
,若△MBC,△MCA,△MAB的面積分別為
1
2
,x,y,則
1
x
+
4
y
的最小值為( 。
A、16B、18C、20D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)
=( 。
A、
1
n(n+2)
B、
1
2
(1-
1
n+2
C、
1
2
3
2
-
1
n+1
-
1
n+2
D、
1
2
(1-
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),且點M(1,e)和N(e,
3
2
)
都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓C1的方程;
(2)是否存在直線l同時與橢圓C1和拋物線C2y2=4x都相切?若存在,求出該直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x≤-3,或x≥6},B={x|2<x<7}.
(1)求A∪B,(∁RA)∩B;
(2)設(shè)C={x|m-3≤x≤3m-2},若B⊆C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(1,1,1)其關(guān)于XOZ平面的對稱點為P′,則︳PP′︳=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(1,+∞)上的函數(shù)f(x)滿足兩個條件:(1)對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2)時,f(x)=2-x;記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個零點,則實數(shù)k的取值范圍是( 。
A、(1,2)
B、(1,
4
3
C、(
4
3
,2]
D、(
4
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線xsinθ+ycosθ=1與圓(x-1)2+y2=9的公共點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點A(-1,0),B(1,0),C(3,2),其外接圓為⊙H.
(1)若直線l過點C,且被⊙H截得的弦長為2,求直線l的方程;
(2)對于線段BH上的任意一點P,若在以C為圓心的圓上都存在不同的兩點M,N,使得點M是線段PN的中點,求⊙C的半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案