【題目】下表為北京市居民用水階梯水價表(單位:元/立方米).

階梯

戶年用水量

(立方米)

水價

其中

自來水費

水資源費

污水處理費

第一階梯

0-180(含)

5.00

2.07

1.57

1.36

第二階梯

181-260(含)

7.00

4.07

第三階梯

260以上

9.00

6.07

(Ⅰ)試寫出水費()與用水量(立方米)之間的函數(shù)關(guān)系式;

(Ⅱ)若某戶居民年交水費1040元,求其中自來水費、水資源費及污水處理費各是多少?

【答案】(Ⅰ);(Ⅱ)自來水費為(元),水資源費為(元),污水處理費(元)

【解析】

()根據(jù)北京市居民用水階梯水價表(單位:立方米),直接求出水費(與用水量(立方米)之間的函數(shù)關(guān)系式即可;

()因為函數(shù)在各區(qū)間段為單調(diào)遞增函數(shù),因此可得,再令,即可解出,從而求出對應(yīng)的自來水費水資源費及污水處理費.

()由北京市居民用水階梯水價表(單位:立方米)得到水費(與用水量(立方米)之間的函數(shù)關(guān)系式為:

;

()由于函數(shù)在各區(qū)間段為單調(diào)遞增函數(shù),

所以當(dāng),,

當(dāng),,

所以,

,解得,

即該用戶當(dāng)年用水量為200立方米,

自來水費為(),水資源費為(),污水處理費().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別是線段 的中點, .

求證: 平面

求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為l

1)求橢圓C的方程;

2)點P是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設(shè)∠F1PF2的角平分線PMC的長軸于點Mm,0),求m的取值范圍.

3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1、PF2的斜率分別為k1、k2,若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求常數(shù)k的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)設(shè),且 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一矩形的一邊在軸上,另兩個頂點在函數(shù)的圖像上,如圖,則此矩形繞軸旋轉(zhuǎn)而成的幾何體的體積的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形中,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是(

;②;

與平面所成的角為;

④四面體的體積為.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A(1)五人站一排,必須站右邊,則不同的排法有多少種;

(2)晚會原定的5個節(jié)目已排成節(jié)目單,開演前又加了2個節(jié)目,若將這2 個節(jié)目插入原節(jié)目單中,則不同的插法有多少種.

B.有四個編有1、2、3、4的四個不同的盒子,有編有1、2、3、4的四個不同的小球,現(xiàn)把小球放入盒子里.

①小球全部放入盒子中有多少種不同的放法;

②恰有一個盒子沒放球有多少種不同的放法;

③恰有兩個盒子沒放球有多少種不同的放法.

查看答案和解析>>

同步練習(xí)冊答案