【題目】下表為北京市居民用水階梯水價表(單位:元/立方米).
階梯 | 戶年用水量 (立方米) | 水價 | 其中 | ||
自來水費 | 水資源費 | 污水處理費 | |||
第一階梯 | 0-180(含) | 5.00 | 2.07 | 1.57 | 1.36 |
第二階梯 | 181-260(含) | 7.00 | 4.07 | ||
第三階梯 | 260以上 | 9.00 | 6.07 |
(Ⅰ)試寫出水費(元)與用水量(立方米)之間的函數(shù)關(guān)系式;
(Ⅱ)若某戶居民年交水費1040元,求其中自來水費、水資源費及污水處理費各是多少?
【答案】(Ⅰ);(Ⅱ)自來水費為(元),水資源費為(元),污水處理費(元)
【解析】
(Ⅰ)根據(jù)北京市居民用水階梯水價表(單位:元立方米),直接求出水費(元與用水量(立方米)之間的函數(shù)關(guān)系式即可;
(Ⅱ)因為函數(shù)在各區(qū)間段為單調(diào)遞增函數(shù),因此可得,再令,即可解出,從而求出對應(yīng)的自來水費水資源費及污水處理費.
(Ⅰ)由北京市居民用水階梯水價表(單位:元立方米)得到水費(元與用水量(立方米)之間的函數(shù)關(guān)系式為:
;
(Ⅱ)由于函數(shù)在各區(qū)間段為單調(diào)遞增函數(shù),
所以當(dāng)時,,
當(dāng)時,,
所以,
令,解得,
即該用戶當(dāng)年用水量為200立方米,
自來水費為(元),水資源費為(元),污水處理費(元).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.
(1)求動圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別是線段, 的中點, .
求證: 平面;
求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: 的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為l.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍.
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1、PF2的斜率分別為k1、k2,若k≠0,試證明為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求常數(shù)k的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值;
(3)設(shè),且, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一矩形的一邊在軸上,另兩個頂點在函數(shù)的圖像上,如圖,則此矩形繞軸旋轉(zhuǎn)而成的幾何體的體積的最大值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是( )
①;②;
③與平面所成的角為;
④四面體的體積為.
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A(1)五人站一排,必須站右邊,則不同的排法有多少種;
(2)晚會原定的5個節(jié)目已排成節(jié)目單,開演前又加了2個節(jié)目,若將這2 個節(jié)目插入原節(jié)目單中,則不同的插法有多少種.
B.有四個編有1、2、3、4的四個不同的盒子,有編有1、2、3、4的四個不同的小球,現(xiàn)把小球放入盒子里.
①小球全部放入盒子中有多少種不同的放法;
②恰有一個盒子沒放球有多少種不同的放法;
③恰有兩個盒子沒放球有多少種不同的放法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com