精英家教網 > 高中數學 > 題目詳情

【題目】已知函數處取得極值.

(1)求常數k的值;

(2)求函數的單調區(qū)間與極值;

(3)設,且, 恒成立,求的取值范圍.

【答案】1;(2)當x0x4,fx)為增函數,0≤x≤4,fx)為減函數;極大值為,極小值為3

【解析】

試題(1)因為函數兩個極值點已知,令,把0和4代入求出k即可.
(2)利用函數的導數確定函數的單調區(qū)間,大于零和小于零分別求出遞增和遞減區(qū)間即可,把函數導數為0的x值代到f(x)中,通過表格,判斷極大、極小值即可.
(3)要使命題成立,只需,由(2)得:其中較小的即為g(x)的最小值,列出不等關系即可求得c的取值范圍.

試題解析:

(1),由于在處取得極值,

可求得

(2)由(1)可知,,

的變化情況如下表:

x

0

+

0

0

+

極大值

極小值

∴當為增函數,為減函數;

∴極大值為極小值為

(3) 要使命題, 恒成立,只需使,即即可.只需

由(2)得單增,在單減.

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列命題中,真命題的個數是( 。

①若“p∨q”為真命題,則“p∧q”為真命題;

②“a∈(0,+∞),函數y=在定義域內單調遞增”的否定;

③l為直線,α,β為兩個不同的平面,若l⊥β,α⊥β,則l∥α;

④“x∈R,≥0”的否定為“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點.

1)若一條直線經過點,且原點到直線的距離為,求該直線的一般式方程;

2)求過點且與原點距離最大的直線的一般式方程,并求出最大距離是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,點在橢圓.

求橢圓的方程;

已知為平面內的兩個定點,過點的直線與橢圓交于兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表為北京市居民用水階梯水價表(單位:元/立方米).

階梯

戶年用水量

(立方米)

水價

其中

自來水費

水資源費

污水處理費

第一階梯

0-180(含)

5.00

2.07

1.57

1.36

第二階梯

181-260(含)

7.00

4.07

第三階梯

260以上

9.00

6.07

(Ⅰ)試寫出水費()與用水量(立方米)之間的函數關系式;

(Ⅱ)若某戶居民年交水費1040元,求其中自來水費、水資源費及污水處理費各是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若對任意的正整數,總存在正整數,使得數列的前項和,則稱回歸數列

項和為的數列是否是回歸數列?并請說明理由.通項公式為的數列是否是回歸數列?并請說明理由;

)設是等差數列,首項,公差,若回歸數列,求的值.

)是否對任意的等差數列,總存在兩個回歸數列,使得成立,請給出你的結論,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某生產企業(yè)對其所生產的甲、乙兩種產品進行質量檢測,分別各抽查6件產品,檢測其重量的誤差,測得數據如下(單位:):

甲:13 15 13 8 14 21

乙:15 13 9 8 16 23

(1)畫出樣本數據的莖葉圖;

(2)分別計算甲、乙兩組數據的方差并分析甲、乙兩種產品的質量(精確到0.1)。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,上一點.

(1)若平面,試說明點的位置并證明的結論;

(2)若的中點,平面,且,

求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求解下列各題.

(1)已知,且為第一象限角,求,;

(2)已知,且為第三象限角,求,;

(3)已知,且為第四象限角,求,;

(4)已知,且為第二象限角,求,.

查看答案和解析>>

同步練習冊答案