【題目】下列命題中,真命題的個數(shù)是(  )

①若“p∨q”為真命題,則“p∧q”為真命題;

②“a∈(0,+∞),函數(shù)y=在定義域內(nèi)單調(diào)遞增”的否定;

③l為直線,α,β為兩個不同的平面,若l⊥β,α⊥β,則l∥α;

④“x∈R,≥0”的否定為“R,<0”.

A. B. C. D.

【答案】A

【解析】

利用復(fù)合命題的真假判斷①的正誤;利用指數(shù)函數(shù)的單調(diào)性判斷②的正誤;直線與平面垂直關(guān)系判斷③的正誤;根據(jù)全稱命題的否定的寫法判斷④的正誤;

①若“p∨q”為真命題,可知兩個命題至少一個是真命題,判斷為“p∧q”有可能是假命題,不正確;

②“a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)單調(diào)遞增”的否定:“a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)不是單調(diào)遞增的”;例如a=,在定義域內(nèi)單調(diào)遞減;所以②正確;

l為直線,α,β為兩個不同的平面,若l⊥β,α⊥β,則l∥α;也可能lα,所以③不正確;

④“xR,x2≥0”的否定的正確寫法為“,使得<0”.故選項不滿足命題的否定形式,所以④不正確;

只有②是真命題;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

溫差

患感冒人數(shù)

8

11

14

20

23

26

其中,,.

(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合的關(guān)系;

(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當(dāng)晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))

參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1,第2,第3,第4 ,第5,得到的頻率分布直方圖如圖所示

(1) 求的值

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再從這人中隨機(jī)抽取人進(jìn)行問卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;

(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個定點(diǎn),過點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,P,Q為雙曲線上關(guān)于原點(diǎn)對稱的兩點(diǎn),若=0,且∠POF<,則該雙曲線的離心率的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①集合{x∈N|x3=x}用列舉法表示為{-1,0,1};

②實數(shù)集可以表示為{x|x為所有實數(shù)}或{R};

③方程組的解集為{x=1,y=2}.

其中正確的有(  )

A.3個B.2個

C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求常數(shù)k的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)設(shè),且, 恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案