【題目】如圖,山頂有一座石塔,已知石塔的高度為.
(1)若以為觀測點(diǎn),在塔頂處測得地面上一點(diǎn)的俯角為,在塔底處測得處的俯角為,用表示山的高度;
(2)若將觀測點(diǎn)選在地面的直線上,其中是塔頂在地面上的射影. 已知石塔高度,當(dāng)觀測點(diǎn)在上滿足時(shí)看的視角(即)最大,求山的高度.
【答案】(1);(2).
【解析】
試題利用基本不等式解決實(shí)際問題時(shí),應(yīng)先仔細(xì)閱讀題目信息,理解題意,明確其中的數(shù)量關(guān)系,并引入變量,依題意列出相應(yīng)的函數(shù)關(guān)系式,然后利用基本不等式求解;(2)在求所列函數(shù)的最值時(shí),若用基本不等式時(shí),等號(hào)取不到時(shí),可利用函數(shù)的單調(diào)性求解;(3)基本不等式具有將“和式”轉(zhuǎn)化為“積式”和將“積式”轉(zhuǎn)化為“和式”的放縮功能,常常用于比較數(shù)的大小或證明不等式,解決問題的關(guān)鍵是分析不等式兩邊的結(jié)構(gòu)特點(diǎn),選擇好利用基本不等式的切入點(diǎn).
試題解析:解:在中,
由正弦定理得:
則
設(shè)
當(dāng)且僅當(dāng)即時(shí),最大,從而最大
由題意,,解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“若,則關(guān)于x的不等式的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是( 。
A.0B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有限集,如果中元素滿足,就稱為“復(fù)活集”.
(1)判斷集合是否為“復(fù)活集”,并說明理由;
(2)若,,且是“復(fù)活集”,求的取值范圍;
(3)若,求證:“復(fù)活集”有且只有一個(gè),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若,試求點(diǎn)的坐標(biāo);
(3)若點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動(dòng)點(diǎn),動(dòng)點(diǎn)滿足(且),點(diǎn)的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo)為,射線與的異于極點(diǎn)的交點(diǎn)為,已知面積的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的盒子中關(guān)有蝴蝶、蜜蜂和蜻蜓三種昆蟲共11只,現(xiàn)在盒子上開一小孔,每次只能飛出1只昆蟲(假設(shè)任意1只昆蟲等可能地飛出).若有2只昆蟲先后任意飛出(不考慮順序),則飛出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有幾只;
(2)若從盒子中先后任意飛出3只昆蟲(不考慮順序),記飛出蜜蜂的只數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com