精英家教網 > 高中數學 > 題目詳情

【題目】定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱上的有界函數,其中稱為函數的上界,已知函數

Ⅰ)若是奇函數,求的值.

Ⅱ)當時,求函數上的值域,判斷函數上是否為有界函數,并說明理由.

Ⅲ)若函數上是以為上界的函數,求實數的取值范圍.

【答案】12)是(3

【解析】試題分析:(1根據奇函數定義得,解得的值2先分離得再根據單調性求值域,最后根據值域判定是否成立3轉化為不等式恒成立,再分離變量得最值,最后根據最值求實數的取值范圍.

試題解析:解:( )由是奇函數,則,

,即,

)當時,

,,滿足

上為有界函數.

若函數上是以為上界的有界函數,則有上恒成立

,

,

,化簡得 ,

,

上面不等式組對一切都成立,

,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知棱長為1的正方體ABCD-A1B1C1D1中,點E,F,M分別是AB,AD,AA1的中點,又P,Q分別在線段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,設平面MEF∩平面MPQ=l,則下列結論中不成立的是 (  )

A. l∥平面ABCD

B. l⊥AC

C. 平面MEF與平面MPQ不垂直

D. 當x變化時,l不是定直線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xoy中,曲線C1 (t為參數,t≠0),其中0≤α<π,在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點的直角坐標;
(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年利潤y(單位:萬元)的影響,對近5年的宣傳費xi和年利潤yi(i=1,2,3,4,5)進行了統(tǒng)計,列出了下表:

x(單位:千元)

2

4

7

17

30

y(單位:萬元)

1

2

3

4

5

員工小王和小李分別提供了不同的方案.
(1)小王準備用線性回歸模型擬合y與x的關系,請你建立y關于x的線性回歸方程(系數精確到0.01);
(2)小李決定選擇對數回歸模擬擬合y與x的關系,得到了回歸方程: =1.450lnx+0.024,并提供了相關指數R2=0.995,請用相關指數說明選擇哪個模型更合適,并預測年宣傳費為4萬元的年利潤(精確到0.01)(小王也提供了他的分析數據 (yi i2=1.15) 參考公式:相關指數R2=1﹣
回歸方程 = x+ 中斜率和截距的最小二乘法估計公式分別為 = , = x,參考數據:ln40=3.688, =538.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自地面垂直向上發(fā)射火箭,火箭的質量為m,試計算將火箭發(fā)射到距地面的高度為h時所做的功.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究一種昆蟲的產卵數y和溫度x是否有關,現收集了7組觀測數據列于下表中,并做出了散點圖,發(fā)現樣本點并沒有分布在某個帶狀區(qū)域內,兩個變量并不呈現線性相關關系,現分別用模型① 與模型;② 作為產卵數y和溫度x的回歸方程來建立兩個變量之間的關系.

溫度x/°C

20

22

24

26

28

30

32

產卵數y/個

6

10

21

24

64

113

322

t=x2

400

484

576

676

784

900

1024

z=lny

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中 , ,zi=lnyi , ,
附:對于一組數據(μ1 , ν1),(μ2 , ν2),(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計分別為: ,

(1)根據表中數據,分別建立兩個模型下y關于x的回歸方程;并在兩個模型下分別估計溫度為30°C時的產卵數.(C1 , C2 , C3 , C4與估計值均精確到小數點后兩位)(參考數據:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關指數計算分別為 .,請根據相關指數判斷哪個模型的擬合效果更好.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , S4=﹣24,a1+a5=﹣10. (Ⅰ)求{an}的通項公式;
(Ⅱ)設集合A={n∈N*|Sn≤﹣24},求集合A中的所有元素.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,AC3,BC4AB5,AA14,點DAB的中點.

(1)求證:AC1平面CDB1

(2)求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

同步練習冊答案