【題目】為了研究一種昆蟲的產卵數y和溫度x是否有關,現收集了7組觀測數據列于下表中,并做出了散點圖,發(fā)現樣本點并沒有分布在某個帶狀區(qū)域內,兩個變量并不呈現線性相關關系,現分別用模型① 與模型;② 作為產卵數y和溫度x的回歸方程來建立兩個變量之間的關系.
溫度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產卵數y/個 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中 , ,zi=lnyi , ,
附:對于一組數據(μ1 , ν1),(μ2 , ν2),(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計分別為: ,
(1)根據表中數據,分別建立兩個模型下y關于x的回歸方程;并在兩個模型下分別估計溫度為30°C時的產卵數.(C1 , C2 , C3 , C4與估計值均精確到小數點后兩位)(參考數據:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關指數計算分別為 .,請根據相關指數判斷哪個模型的擬合效果更好.
科目:高中數學 來源: 題型:
【題目】微信紅包是一款可以實現收發(fā)紅包、查收記錄和提現的手機應用.某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下,對它們搶到的紅包個數進行統(tǒng)計,得到如表數據:
型號 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果搶到紅包個數超過5個的手機型號為“優(yōu)”,否則“非優(yōu)”,請據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.
①求在型號Ⅰ被選中的條件下,型號Ⅱ也被選中的概率;
②以X表示選中的手機型號中搶到的紅包超過5個的型號種數,求隨機變量X的分布列及數學期望E(X).
下面臨界值表供參考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:直線mx﹣y+1=0與圓(x﹣2)2+y2=4有公共點;設命題q:實數m滿足方程 + =1表示雙曲線.
(1)若“p∧q”為真命題,求實數m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱是上的有界函數,其中稱為函數的上界,已知函數.
(Ⅰ)若是奇函數,求的值.
(Ⅱ)當時,求函數在上的值域,判斷函數在上是否為有界函數,并說明理由.
(Ⅲ)若函數在上是以為上界的函數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,(其中A>0,ω>0,0<φ<)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為M(,-2).
(1)求f(x)的解析式;
(2)將函數f(x)的圖象向右平移個單位后,再將所得圖象上各點的橫坐標縮小到原來的,縱坐標不變,得到y=g(x)的圖象,求函數y=g(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了預防流感,某學校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內每立方米空氣中的含藥量(毫克)與時間(小時)成正比;藥物釋放完畢后,與的函數關系式為(為常數),如圖所示.據圖中提供的信息,回答下列問題:
(1)寫出從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數關系式;
(2)據測定,當空氣中每立方米的含藥量降低到毫克以下時,學生方可進教室。那么藥物釋放開始,至少需要經過多少小時后,學生才能回到教室?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡的發(fā)展,人們可以在網絡上購物、玩游戲、聊天、導航等,所以人們對上網流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結果如表.
組號 | 年齡 | 訪談人數 | 愿意使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應分別抽取多少人?
(Ⅱ)若從第5組的被調查者訪談人中隨機選取2人進行追蹤調查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計數據填寫下面2×2列聯(lián)表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關?
年齡不低于48歲的人數 | 年齡低于48歲的人數 | 合計 | |
愿意使用的人數 | |||
不愿意使用的人數 | |||
合計 |
參考公式: ,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙倆人各進行3次射擊,甲每次擊中目標的概率為 ,乙每次擊中目標的概率為 . (Ⅰ)記甲恰好擊中目標2次的概率;
(Ⅱ)求乙至少擊中目標2次的概率;
(Ⅲ)求乙恰好比甲多擊中目標2次的概率;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com