若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則不等式xf(x)<0的解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:易判斷f(x)在(-∞,0)上的單調(diào)性及f(x)圖象所過特殊點(diǎn),作出f(x)的草圖,根據(jù)圖象可解不等式.
解答: 解:∵f(x)在R上是奇函數(shù),且f(x)在(0,+∞)上是增函數(shù),
∴f(x)在(-∞,0)上也是增函數(shù),
由f(2)=0,得f(-2)=-f(2)=0,
即f(-2)=0,
由f(-0)=-f(0),得f(0)=0,
作出f(x)的草圖,如圖所示:
由圖象,得xf(x)<0?
x>0
f(x)<0
x<0
f(x)>0
,
解得0<x<2或-2<x<0,
∴xf(x)<0的解集為:(-2,0)∪(0,2),
故答案為:(-2,0)∪(0,2)
點(diǎn)評(píng):本題考查函數(shù)奇偶性、單調(diào)性的綜合應(yīng)用,考查數(shù)形結(jié)合思想,靈活作出函數(shù)的草圖是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比大于1的等比數(shù)列,已知a1+a2=8,a3+a4=72.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)若bn=
n•an
2
,求數(shù)列{bn}前n項(xiàng)和;
(3)若{cn}滿足cn=an+(-1)nlnan,求數(shù)列{cn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程kx2+2(k-1)x-(k-1)=0.
(1)若方程有兩個(gè)不相等的異號(hào)實(shí)根,求k的取值范圍;
(2)若方程有兩個(gè)不相等的正實(shí)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x+b)的圖象不經(jīng)過第一象限,則a的取值范圍是
 
,b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)(x-1)2+(y-2)2=5經(jīng)過橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F和上頂點(diǎn)B.
(1)求橢圓E的方程;
(2)過原點(diǎn)O的射線l在第一象限與橢圓E的交點(diǎn)為Q,與圓C的交點(diǎn)為P,M為OP的中點(diǎn),求
OM
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

p:若x2+y2≠0,則x,y不全為零,q:若m>-2,則x2+2x-m=0有實(shí)根,則(  )
A、“p∨q”為真
B、“¬p”為真
C、“p∧q”為真
D、“¬q”為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.PA=1,AD=2.
(1)證明:BD⊥平面PAC;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足a7=a6+2a5.若存在兩項(xiàng)am,an使得
aman
=4a1,則
1
m
+
9
n
的最小值為( 。
A、
8
3
B、
11
4
C、
17
6
D、
14
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,{bn}為等比數(shù)列,且滿足:a1003+a1013=π,b6•b9=2,則tan
a1+a2015
1+b7b8
=( 。
A、1
B、-1
C、
3
3
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案