【題目】某著名歌星在某地舉辦一次歌友會(huì),有1000人參加,每人一張門(mén)票,每張100元.在演出過(guò)程中穿插抽獎(jiǎng)活動(dòng),第一輪抽獎(jiǎng)從這1000張票根中隨機(jī)抽取10張,其持有者獲得價(jià)值1000元的獎(jiǎng)品,并參加第二輪抽獎(jiǎng)活動(dòng).第二輪抽獎(jiǎng)由第一輪獲獎(jiǎng)?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個(gè)實(shí)數(shù)x,y(x,y∈[0,4]),若滿(mǎn)足y≥ ,電腦顯示“中獎(jiǎng)”,則抽獎(jiǎng)?wù)咴俅潍@得特等獎(jiǎng)獎(jiǎng)金;否則電腦顯示“謝謝”,則不獲得特等獎(jiǎng)獎(jiǎng)金.
(1)已知小明在第一輪抽獎(jiǎng)中被抽中,求小明在第二輪抽獎(jiǎng)中獲獎(jiǎng)的概率;
(2)設(shè)特等獎(jiǎng)獎(jiǎng)金為a元,小李是此次活動(dòng)的顧客,求小李參加此次活動(dòng)獲益的期望;若該歌友會(huì)組織者在此次活動(dòng)中獲益的期望值是至少獲得70000元,求a的最大值.

【答案】
(1)解:(Ⅰ)由題意知作圖如下,

,

結(jié)合圖象可知,陰影內(nèi)的面積S= × ×4=5,

故小明在第二輪抽獎(jiǎng)中獲獎(jiǎng)的概率P= ;


(2)解:由題意,

E(X)=1000× +a× × =10+ ;

故100000﹣1000×10﹣10× ×a≥70000,

即a≤6400,

故a的最大值為6400.


【解析】(1)由題意知可化為幾何概率模型求解,從而作圖求得;(2)易知E(X)=1000× +a× × =10+ ;100000﹣1000×10﹣10× ×a≥70000,從而再解出a的最大值.
【考點(diǎn)精析】關(guān)于本題考查的離散型隨機(jī)變量及其分布列,需要了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在多面體SP﹣ABCD中,底面ABCD為矩形,AB=PC=1,AD=AS=2,且AS∥CPAS⊥面ABCD,EBC的中點(diǎn).

1)求證:AE∥面SPD;

2)求三棱錐S-BPD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列中, 分別是下表中第行中的某一個(gè)數(shù),且中任何兩個(gè)數(shù)不在下表的同一列中.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是(
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過(guò)樣本點(diǎn)的中心( ,
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),

(Ⅰ)求的單調(diào)區(qū)間;

)求證:1是的唯一極小值點(diǎn);

(Ⅲ)若存在, ,滿(mǎn)足,求的取值范圍.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,我市某居民小區(qū)擬在邊長(zhǎng)為1百米的正方形地塊ABCD上劃出一個(gè)三角形地塊APQ種植草坪,兩個(gè)三角形地塊PAB與QAD種植花卉,一個(gè)三角形地塊CPQ設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)P在邊BC上,點(diǎn)Q在邊CD上,記∠PAB=a.
(1)當(dāng)∠PAQ= 時(shí),求花卉種植面積S關(guān)于a的函數(shù)表達(dá)式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請(qǐng)?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(2x+3)+x2
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[﹣ , ]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)求函數(shù)的零點(diǎn)的個(gè)數(shù);

(3),若函數(shù)0,內(nèi)有極值,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案