已知點
為橢圓
的左焦點,點
為橢圓
上任意一點,點
的坐標(biāo)為
,則
取最大值時,點
的坐標(biāo)為
.
試題分析:橢圓的左焦點為
,右焦點為
,根據(jù)橢圓的定義,
,∴
,由三角形的性質(zhì),知
,當(dāng)
是
延長線與橢圓的交點
時,等號成立,故所求最大值為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓
的左、右焦點分別為
,其上頂點為
已知
是邊長為
的正三角形.
(1)求橢圓
的方程;
(2)過點
任作一動直線
交橢圓
于
兩點,記
.若在線段
上取一點
,使得
,當(dāng)直線
運動時,點
在某一定直線上運動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在坐標(biāo)原點,焦點在
軸上的橢圓過點
,且它的離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓
相切的直線
交橢圓于
兩點,若橢圓上一點
滿足
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的方程為
,其中
.
(1)求橢圓
形狀最圓時的方程;
(2)若橢圓
最圓時任意兩條互相垂直的切線相交于點
,證明:點
在一個定圓上.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的焦距為
,過右焦點和短軸一個端點的直線的斜率為
,
為坐標(biāo)原點.
(1)求橢圓
的方程.
(2)設(shè)斜率為
的直線
與
相交于
、
兩點,記
面積的最大值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的由頂點為A,右焦點為F,直線
與x軸交于點B且與直線
交于點C,點O為坐標(biāo)原點,
,過點F的直線
與橢圓交于不同的兩點M,N.
(1)求橢圓的方程;
(2)求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是橢圓
,
上除頂點外的一點,
是橢圓的左焦點,若
則點
到該橢圓左焦點的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線D的頂點是橢圓C:
=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.
查看答案和解析>>