【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn)某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

月份代碼x

1

2

3

4

5

6

市場(chǎng)占有率

11

13

16

15

20

21

請(qǐng)?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說(shuō)明可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系;

y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2018年2月份的市場(chǎng)占有率;

根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車擴(kuò)大市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000元輛和800元輛的A,B兩款車型報(bào)廢年限各不相同考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:

報(bào)廢年限

車型

1年

2年

3年

4年

總計(jì)

A

10

30

40

20

100

B

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車每年可以為公司帶來(lái)收入500元不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù)如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車型?

參考數(shù)據(jù):,,

參考公式:相關(guān)系數(shù)

回歸直線方程為其中:,

【答案】(1)見(jiàn)解析;(2),估計(jì)2018年2月的市場(chǎng)占有率為.(3)見(jiàn)解析

【解析】

(1)畫出散點(diǎn)圖,求出相關(guān)系數(shù),判斷線性相關(guān)性即可;(2)求出回歸方程的系數(shù),求出回歸方程,代入函數(shù)值檢驗(yàn)即可;(3)求出分布列,求出數(shù)學(xué)期望比較即可判斷.

散點(diǎn)圖如圖所示

,

,

,

所以兩變量之間具有較強(qiáng)的線性相關(guān)關(guān)系,

故可用線性回歸模型擬合兩變量之間的關(guān)系.

,

,

回歸直線方程為,

2018年2月的月份代碼,

,

所以估計(jì)2018年2月的市場(chǎng)占有率為

用頻率估計(jì)概率,A款單車的利潤(rùn)X的分布列為:

X

0

500

1000

P

B款單車的利潤(rùn)Y的分布列為:

Y

200

700

1200

P

以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),故應(yīng)選擇B款車型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高血壓高血糖和高血脂統(tǒng)稱三高”.如圖是西南某地區(qū)從2010年至2016年患三高人數(shù)y(單位:千人)的折線圖.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)求出相關(guān)系數(shù)(精確到0.01)并加以說(shuō)明;

2)建立關(guān)于的回歸方程,預(yù)測(cè)2018年該地區(qū)患三高的人數(shù).

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),

回歸方程 中:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2a3-2成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明:存在無(wú)窮多個(gè)棱長(zhǎng)為正整數(shù)的長(zhǎng)方體,其體積恰等于對(duì)角線長(zhǎng)的平方,且該長(zhǎng)方體的每一個(gè)表面總可以割并成兩個(gè)整邊正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國(guó)新四大發(fā)明之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:

不小于40

小于40

合計(jì)

單車用戶

12

y

m

非單車用戶

x

32

70

合計(jì)

n

50

100

1)求出列聯(lián)表中字母x、ym、n的值;

2)①?gòu)拇藰颖局校瑢?duì)單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?

②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).

下面臨界值表供參考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若射線)與直線和曲線分別交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)①若直線的圖象相切, 求實(shí)數(shù)的值;

②令函數(shù),求函數(shù)在區(qū)間上的最大值.

(2)已知不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高考改革后,學(xué)生除了語(yǔ)數(shù)外三門必選外,可在A類科目:物理、化學(xué)、生物和B類科目:政治、地理、歷史共6個(gè)科目中任選3門.

1)若小明同學(xué)已經(jīng)確定選了物理,現(xiàn)在他還要從剩余的5科中再選2科,則他在歷史與地理兩科中至少選一科的概率?

2)求小明同學(xué)選A類科目數(shù)X的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在五面體中,四邊形是正方形,,

.

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案