【題目】如圖所示的程序框圖,當輸入的x的值為04,輸出的值相等,根據(jù)該圖和下列各小題的條件解答下面的幾個問題.

(1)該程序框圖解決的是一個什么問題?

(2)當輸入的x的值為3求輸出的f(x)的值;

(3)要想使輸出的值最大,求輸入的x的值.

【答案】(1) 該程序框圖解決的是求二次函數(shù)f(x)=-x2mx的函數(shù)值的問題; (2)3; (3)2

【解析】試題分析:(1)由所給的程序框圖可得其功能是是求二次函數(shù)f(x)=-x2mx的函數(shù)值。(2)根據(jù)題意由f(0)f(4)可求得m4,因此函數(shù)解析式為f(x)=-x24x。f(3)=-324×33,即可得當輸入的x的值為3輸出的f(x)的值為3.3)由f(x)=-x24x=-(x2)24,可得當x2,f(x)取得最大值f(x)max4,故要想使輸出的值最大,輸入的x的值應為2

試題解析

(1)該程序框圖解決的是求二次函數(shù)f(x)=-x2mx的函數(shù)值的問題.

(2)因為當輸入的x的值為04,輸出的值相等,

所以f(0)f(4)

f(0)0,f(4)=-164m,

所以-164m0,

解得m4,

所以f(x)=-x24x.

f(3)=-324×33,

所以當輸入的x的值為3,輸出的f(x)的值為3.

(3)因為f(x)=-x24x=-(x2)24,

所以當x2,f(x)取得最大值f(x)max4,

因此要想使輸出的值最大,輸入的x的值應為2。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點, 軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位,點的極坐標為為圓心,4為半徑;又直線的極坐標方程為。

(Ⅰ)求直線和圓的普通方程;

試判定直線和圓的位置關系.若相交,則求直線被圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認為孩子的幸福感強與是否是留守兒童有關?

(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.

參考公式: ; 附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列5個命題中正確命題的個數(shù)是( )

①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;

②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;

③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;

④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;

⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.

A.2 B.3

C.4 D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生研究性學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化,老師講課開始時,學生的興趣激增;接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.設 表示學生注意力指標,該小組發(fā)現(xiàn) 隨時間 (分鐘)的變化規(guī)律( 越大,表明學生的注意力越集中)如下: ,且

若上課后第 分鐘時的注意力指標為 ,回答下列問題:

(1)求 的值;

(2)上課后第 分鐘時和下課前 分鐘時比較,哪個時間注意力更集中?并請說明理由

(3)在一節(jié)課中,學生的注意力指標至少達到 的時間能保持多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下頻數(shù)分布直方圖:

該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的頻率;

(2)已知選取的是1月與6月的兩組數(shù)據(jù).

(i)請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關于晝夜溫差的線性回歸方程;

(ii)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在,使得,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人對東北一種松樹的生長進行了研究,收集了其高度h()與生長時間t()的相關數(shù)據(jù),選擇hmtbh=loga(t+1)來刻畫ht的關系,你認為哪個符合?并預測第8年的松樹高度.

t()

1

2

3

4

5

6

h()

0.6

1

1.3

1.5

1.6

1.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一建筑物的三視圖(單位: ),現(xiàn)需將其外壁用油漆粉刷一遍,已知每平方米用漆,問需要油漆多少千克?(無需求近似值)

查看答案和解析>>

同步練習冊答案