【題目】如圖,四邊形是平行四邊形,平面⊥平面,,,,

(Ⅰ)求證:平面

(Ⅱ)求直線(xiàn)與平面所成角的正弦值.

【答案】(1)見(jiàn)解析;(2)直線(xiàn)與平面所成角的正弦值為.

【解析】

1)利用中位線(xiàn)定理,先證明四邊形是平行四邊形,可得,再根據(jù)線(xiàn)面平行的判定定理即可證明;(2) 先判斷出直線(xiàn)與平面所成角即為直線(xiàn)與平面所成角, 過(guò)點(diǎn)于點(diǎn),連接,又可證明平面,所以直線(xiàn)與平面所成角即為,再根據(jù)余弦定理和解直角三角形即可求出結(jié)論.

(1)取的中點(diǎn)為,連接,在中,

因?yàn)?/span>的中點(diǎn),所以,

又因?yàn)?/span>,所以,

即四邊形是平行四邊形,所以,

平面,平面,

所以平面.

(2)在中,,由余弦定理可,

進(jìn)而可得,即,

又因?yàn)槠矫?/span>平面平面;平面平面

所以平面.

又因?yàn)?/span>平面,

所以平面平面.

因?yàn)?/span>,

所以直線(xiàn)與平面所成角即為直線(xiàn)與平面所成角.

過(guò)點(diǎn)于點(diǎn),連接,

又因?yàn)槠矫?/span>平面

所以平面,

所以直線(xiàn)與平面所成角即為.

中,,由余弦定理可得,

所以,因此

中,,所以直線(xiàn)與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) , 其中a∈R.若對(duì)任意的非零實(shí)數(shù)x1 , 存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
A.k≤0
B.k≥8
C.0≤k≤8
D.k≤0或k≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD.在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)BP=t.
(I)用t表示出PQ的長(zhǎng)度,并探求△CPQ的周長(zhǎng)l是否為定值;
(Ⅱ)設(shè)探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米),求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某自行車(chē)手從O點(diǎn)出發(fā),沿折線(xiàn)O﹣A﹣B﹣O勻速騎行,其中點(diǎn)A位于點(diǎn)O南偏東45°且與點(diǎn)O相距20 千米.該車(chē)手于上午8點(diǎn)整到達(dá)點(diǎn)A,8點(diǎn)20分騎至點(diǎn)C,其中點(diǎn)C位于點(diǎn)O南偏東(45°﹣α)(其中sinα= ,0°<α<90°)且與點(diǎn)O相距5 千米(假設(shè)所有路面及觀測(cè)點(diǎn)都在同一水平面上).

(1)求該自行車(chē)手的騎行速度;

(2)若點(diǎn)O正西方向27.5千米處有個(gè)氣象觀測(cè)站E,假定以點(diǎn)E為中心的3.5千米范圍內(nèi)有長(zhǎng)時(shí)間的持續(xù)強(qiáng)降雨.試問(wèn):該自行車(chē)手會(huì)不會(huì)進(jìn)入降雨區(qū),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,短軸長(zhǎng)為,右焦點(diǎn)為 (1) 求橢圓的標(biāo)準(zhǔn)方程;(2) 若直線(xiàn)經(jīng)過(guò)點(diǎn)且與橢圓有且僅有一個(gè)公共點(diǎn),過(guò)點(diǎn)作直線(xiàn)交橢圓于另一點(diǎn) ①證明:當(dāng)直線(xiàn)與直線(xiàn)的斜率,均存在時(shí),.為定值;②求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿(mǎn)足下列條件的橢圓的標(biāo)準(zhǔn)方程:

(1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過(guò)點(diǎn)M(3,2);

(2)ca=5∶13,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離的和為26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線(xiàn)的焦點(diǎn)為,過(guò)且斜率為的直線(xiàn)交于兩點(diǎn),

(1)求的方程;

(2)求過(guò)點(diǎn)且與的準(zhǔn)線(xiàn)相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),圓C的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線(xiàn)l和圓C的極坐標(biāo)方程;

(Ⅱ)設(shè)直線(xiàn)l和圓C相交于A,B兩點(diǎn),求弦AB與其所對(duì)劣弧所圍成的圖形面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案