巳知數(shù)列{an}的前n項和為,且,數(shù)列{bn}滿足 ,

(I)證明:數(shù)列{an}為等比數(shù)列;[來源:]

(II)求數(shù)列{an}和{bn}的通項公式;

(III)記,數(shù)列{cn}的前n項和為Tn,比較2Tn的大小.

 

【答案】

(1)略(2),;(3)<.

【解析】(1)遞寫一式相減得;(2)分步求和得(3)化簡裂項法。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

巳知數(shù)列{an}的前n項和Sn,滿足:S2=3,2Sn=n+nan,n∈N*,數(shù)列{bn}是遞增的等比數(shù)列,且b1+b4=9,b2•b3=8,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求和Tn=a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

巳知數(shù)列{an}的前n項和Sn,滿足:S2=3,2Sn=n+nan,n∈N*,數(shù)列{bn}是遞增的等比數(shù)列,且b1+b4=9,b2•b3=8,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求和Tn=a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年江西省南昌二中高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:解答題

巳知數(shù)列{an}的前n項和Sn,滿足:S2=3,2Sn=n+nan,n∈N*,數(shù)列{bn}是遞增的等比數(shù)列,且b1+b4=9,b2•b3=8,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求和Tn=a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學 來源:2011年安徽省合肥市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

巳知數(shù)列{an}的前n項和Sn,滿足:S2=3,2Sn=n+nan,n∈N*,數(shù)列{bn}是遞增的等比數(shù)列,且b1+b4=9,b2•b3=8,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求和Tn=a1b1+a2b2+…+anbn

查看答案和解析>>

同步練習冊答案