從雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716575740.png)
的左焦點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716606302.png)
引圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716622596.png)
的切線,切點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716637304.png)
,延長
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716653391.png)
交雙曲線右支于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716669289.png)
點,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716684399.png)
為線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716715374.png)
的中點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716731292.png)
為坐標(biāo)原點,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716747648.png)
=
試題分析:∵MO是△PF
1F
2的中位線,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716762880.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716778979.png)
,根據(jù)雙曲線的方程得:a=3,b=4,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716809665.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716825517.png)
,∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716840396.png)
是圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716622596.png)
的切線,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716871512.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716887626.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050716949421.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240507169656284.png)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051850573725.png)
的右焦點與拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051850589562.png)
的焦點重合,則該雙曲線的焦點到其漸近線的距離等于( ).
A.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051850605322.png) | B.4![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051850620344.png) | C.3 | D.5 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,已知雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240511269711118.png)
的左、右焦點分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051126987675.png)
,P是雙曲線右支上的一點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051127018554.png)
軸交于點A,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051127033558.png)
的內(nèi)切圓在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051127049396.png)
上的切點為Q,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051127065478.png)
,則雙曲線的離心率是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240511270807432.jpg)
A.3 | B.2 | C.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051127096344.png) | D.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051127143344.png) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
(2014·咸寧模擬)雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050834045341.png)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050834045358.png)
=1的漸近線與圓x
2+(y-2)
2=1相切,則雙曲線離心率為( )
A.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050834060365.png) | B.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050834092368.png) | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知定點A、B,且|AB|=4,動點P滿足|PA|-|PB|=3,則|PA|的最小值是( )
A.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050541040338.png)
B.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050541087388.png)
C.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050541103377.png)
D.5
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504443971118.png)
的離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050444412344.png)
,且直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050444444537.png)
(c是雙曲線的半焦距)與拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050444459525.png)
的準(zhǔn)線重合,則此雙曲線的方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240456237291110.png)
的右焦點為F,若過點F且傾斜角為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045623745397.png)
的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044440917282.png)
分別是雙曲線C:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044440933587.png)
的左、右焦點,B是虛軸的端點,直線F
1B與C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸交與點M,若|MF
2|=|F
1F
2|,則C的離心率是( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240444409643637.png)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054036202621.png)
的離心率等于____________.
查看答案和解析>>