海關(guān)對(duì)同時(shí)從A,B,C三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此商品的數(shù)量(單位:件)如表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測(cè).
地區(qū)ABC
數(shù)量50150100
(Ⅰ)求這6件樣品來(lái)自A,B,C各地區(qū)商品的數(shù)量;
(Ⅱ)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件商品來(lái)自相同地區(qū)的概率.
考點(diǎn):古典概型及其概率計(jì)算公式
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(Ⅰ)先計(jì)算出抽樣比,進(jìn)而可求出這6件樣品來(lái)自A,B,C各地區(qū)商品的數(shù)量;
(Ⅱ)先計(jì)算在這6件樣品中隨機(jī)抽取2件的基本事件總數(shù),及這2件商品來(lái)自相同地區(qū)的事件個(gè)數(shù),代入古典概型概率計(jì)算公式,可得答案.
解答: 解:(Ⅰ)A,B,C三個(gè)地區(qū)商品的總數(shù)量為50+150+100=300,
故抽樣比k=
6
300
=
1
50
,
故A地區(qū)抽取的商品的數(shù)量為:
1
50
×50=1;
B地區(qū)抽取的商品的數(shù)量為:
1
50
×150=3;
C地區(qū)抽取的商品的數(shù)量為:
1
50
×100=2;
(Ⅱ)在這6件樣品中隨機(jī)抽取2件共有:
C
2
6
=15個(gè)不同的基本事件;
且這些事件是等可能發(fā)生的,
記“這2件商品來(lái)自相同地區(qū)”為事件A,則這2件商品可能都來(lái)自B地區(qū)或C地區(qū),
則A中包含
C
2
2
+
C
2
3
=4種不同的基本事件,
故P(A)=
4
15

即這2件商品來(lái)自相同地區(qū)的概率為
4
15
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是分層抽樣,古典概型概率計(jì)算公式,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為拋物線(xiàn)C:y2=3x的焦點(diǎn),過(guò)F且傾斜角為30°的直線(xiàn)交C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的面積為(  )
A、
3
3
4
B、
9
3
8
C、
63
32
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū),規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線(xiàn)段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m,經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60m處,點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸),tan∠BCO=
4
3

(1)求新橋BC的長(zhǎng);
(2)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a1=1,an+1=
a
2
n
-2an+2
+b(n∈N*
(Ⅰ)若b=1,求a2,a3及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若b=-1,問(wèn):是否存在實(shí)數(shù)c使得a2n<c<a2n+1對(duì)所有的n∈N*成立,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=
π
3
,M為BC上一點(diǎn),且BM=
1
2

(Ⅰ)證明:BC⊥平面POM;
(Ⅱ)若MP⊥AP,求四棱錐P-ABMO的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知4sin2
A-B
2
+4sinAsinB=2+
2

(Ⅰ)求角C的大;
(Ⅱ)已知b=4,△ABC的面積為6,求邊長(zhǎng)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線(xiàn)x=-3上任意一點(diǎn),過(guò)F作TF的垂線(xiàn)交橢圓C于點(diǎn)P,Q.
①證明:OT平分線(xiàn)段PQ(其中O為坐標(biāo)原點(diǎn));
②當(dāng)
|TF|
|PQ|
最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x+2cosx-
3
在區(qū)間[0,
π
2
]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在3張獎(jiǎng)券中有一、二等獎(jiǎng)各1張,另1張無(wú)獎(jiǎng).甲、乙兩人各抽取1張,兩人都中獎(jiǎng)的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案