已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上.若橢圓上的點(diǎn)A(1,
3
2
)
到焦點(diǎn)F1、F2的距離之和等于4.
(1)寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)Q(1,0)的直線與橢圓交于兩點(diǎn)M、N,當(dāng)△OMN的面積取得最大值時(shí),求直線MN的方程.
考點(diǎn):直線與圓錐曲線的關(guān)系,橢圓的標(biāo)準(zhǔn)方程,橢圓的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)橢圓的方程,利用橢圓上的點(diǎn)A(1,
3
2
)
到焦點(diǎn)F1、F2的距離之和等于4,建立方程組,即可求出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)分類討論,確定△OMN面積,利用△OMN面積取得最大值,即可求直線MN的方程.
解答: 解:(1)設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0)
∵橢圓上的點(diǎn)A(1,
3
2
)
到焦點(diǎn)F1、F2的距離之和等于4,
2a=4
1
a2
+
3
4
b2
=1
,
∴a=2,b=1
∴c=
a2-b2
=
3

∴橢圓C的方程為
x2
4
+y2=1
,焦點(diǎn)坐標(biāo)為(-
3
,0)
,(
3
,0)
;
(2)MN斜率不為0,設(shè)MN方程為x=my+1.
聯(lián)立橢圓方程:
x2
4
+y2=1
可得(m2+4)y2+2my-3=0
記M、N縱坐標(biāo)分別為y1、y2,
S△OMN=
1
2
|OQ|×|y1-y2|=
1
2
×1×
16m2+48
m2+4
=
2
m2+3
m2+4

設(shè)t=
m2+3
(t≥3)

S=
2t
t2+1
=
2
t+
1
t
(t≥
3
)
,該式在[
3
,+∞)
單調(diào)遞減,
∴在t=
3
,即m=0時(shí)S取最大值
3
2

綜上,直線MN的方程為x=1.
點(diǎn)評:本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
b
滿足|
a
|=|
b
|=1,|3
a
-
b
|=
5

(1)求|
a
+3
b
|的值;
(2)求3
a
-
b
a
+3
b
夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+3x|x-a|,其中a∈R.
(1)當(dāng)a=2時(shí),把函數(shù)f(x)寫成分段函數(shù)的形式,并畫出函數(shù)f(x)的圖象;
(2)指出a=2時(shí)函數(shù)f(x)單調(diào)區(qū)間,并求函數(shù)在[1,3]最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
4
+
y2
m
=1(0<m<4)的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對稱.
(1)若點(diǎn)P的坐標(biāo)為(4,3),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得OP⊥OM,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4,若焦點(diǎn)在x軸上的橢圓
x2
a2
+
y2
b2
=1
 過點(diǎn)p(0,1),且其長軸長等于圓O的直徑.
(1)求橢圓的方程;
(2)過點(diǎn)P作兩條互相垂直的直線l1與l2,l1與圓O交于A、B兩點(diǎn),l2交橢圓于另一點(diǎn)C.
(Ⅰ)設(shè)直線l1的斜率為k,求弦AB長;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+2)的定義域?yàn)閇1,2],求f(2x+1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+3,g(x)=(6+a)•2x-1
(Ⅰ)若f(1)=f(3),求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,判斷函數(shù)F(x)=
2
1+g(x)
的單調(diào)性,并給出證明;
(Ⅲ)當(dāng)x∈[-2,2]時(shí),f(x)≥a(a∉(-4,4))恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商店經(jīng)銷一種商品,每件進(jìn)價(jià)7元,市場預(yù)計(jì)以每件20元的價(jià)格銷售時(shí)該店一年可銷售2000件,經(jīng)過市場調(diào)研發(fā)現(xiàn)每件銷售價(jià)格在每件20元的基礎(chǔ)上每減少一元?jiǎng)t增加銷售400件,而每增加一元?jiǎng)t減少銷售100件,現(xiàn)設(shè)每件的銷售價(jià)格為x元,x為整數(shù).
(Ⅰ)寫出該商店一年內(nèi)銷售這種商品所獲利潤y(元)與每件的銷售價(jià)格x(元)的函數(shù)關(guān)系式(并寫出這個(gè)函數(shù)的定義域);
(Ⅱ)當(dāng)每件銷售價(jià)格x為多少元時(shí),該商店一年內(nèi)利潤y(元)最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較大。2-11
 
2-12

查看答案和解析>>

同步練習(xí)冊答案