如圖,橢圓C:
x2
4
+
y2
m
=1(0<m<4)的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱.
(1)若點(diǎn)P的坐標(biāo)為(4,3),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得OP⊥OM,求實(shí)數(shù)m的最大值.
考點(diǎn):直線與圓錐曲線的關(guān)系,基本不等式在最值問(wèn)題中的應(yīng)用,橢圓的標(biāo)準(zhǔn)方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)依題意,M是線段AP的中點(diǎn),求出M的坐標(biāo),代入橢圓方程,即可求m的值;
(2)設(shè)M(x0,y0),則
x
2
0
4
+
y
2
0
m
=1
,因?yàn)镺P⊥OM,所以x0(2x0+2)+2y02=0.兩式聯(lián)立,表示出m,利用基本不等式即可得出結(jié)論.
解答: 解:(1)依題意,M是線段AP的中點(diǎn),
因?yàn)锳(-2,0),P(4,3),
所以點(diǎn)M的坐標(biāo)為(1,
3
2
)

由點(diǎn)M在橢圓C上,所以
1
4
+
9
4m
=1

解得m=3.
(2)設(shè)M(x0,y0),則
x
2
0
4
+
y
2
0
m
=1
①,由題意知-2<x0<2.
因?yàn)镸是線段AP的中點(diǎn),所以P(2x0+2,2y0).
因?yàn)镺P⊥OM,所以x0(2x0+2)+2y02=0.②
由①②消去y0,整理可得m=
4x0(x0+1)
x02-4
=4+
4
(x0+4)+
12
x0+4
-8
≤2-
3
,
當(dāng)且僅當(dāng)x0=-4+2
3
時(shí),等號(hào)成立,
因?yàn)?<m<4,
所以m的最大值是2-
3
點(diǎn)評(píng):本題考查橢圓方程,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,正確表示點(diǎn)的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-1,證明函數(shù)f(x)在(-∞,0)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
,an+1)
(n∈N*)在函數(shù)y=x2+1的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=1,bn+1=bn+2an,求數(shù)列{bn}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
).
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)求直線l被曲線C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(3x-
1
x
x
)n
(n∈N*)的展開(kāi)式中
(1)若各項(xiàng)系數(shù)之和為256,求n的值;
(2)若含有常數(shù)項(xiàng),求最小的n的值,并求此時(shí)展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(
3
4
π+α
)=
5
13
,cos(
π
4
)=
3
5
,且0<α<
π
4
<β<
4
,求cos(α+β)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上.若橢圓上的點(diǎn)A(1,
3
2
)
到焦點(diǎn)F1、F2的距離之和等于4.
(1)寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)過(guò)點(diǎn)Q(1,0)的直線與橢圓交于兩點(diǎn)M、N,當(dāng)△OMN的面積取得最大值時(shí),求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x|x-a|,(a∈R),若a=2,解關(guān)于x的不等式f(x)<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a+b+c=1,a,b,c∈R+,
4a+1
+
4b+1
+
4c+1
≤m
,則m最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案