【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔仔細(xì)算相還”.其大意為:“有一個(gè)走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”.則該人第五天走的路程為(
A.48里
B.24里
C.12里
D.6里

【答案】C
【解析】解:記每天走的路程里數(shù)為{an}, 由題意知{an}是公比 的等比數(shù)列,
由S6=378,得 =378,
解得:a1=192,
=12(里).
故選:C.
由題意可知,每天走的路程里數(shù)構(gòu)成以 為公比的等比數(shù)列,由S6=378求得首項(xiàng),再由等比數(shù)列的通項(xiàng)公式求得該人第五天走的路程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購(gòu)銷(xiāo)平臺(tái).已知經(jīng)銷(xiāo)某種商品的電商在任何一個(gè)銷(xiāo)售季度內(nèi),每售出1噸該商品可獲利潤(rùn)0.5萬(wàn)元,未售出的商品,每1噸虧損0.3萬(wàn)元.根據(jù)往年的銷(xiāo)售經(jīng)驗(yàn),得到一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷(xiāo)售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷(xiāo)售季度的市場(chǎng)需求量,T(單位:萬(wàn)元)表示該電商下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該商品獲得的利潤(rùn). (Ⅰ)視x分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅲ)在頻率分布直方圖的市場(chǎng)需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值)代表該組的各個(gè)值,并以市場(chǎng)需求量落入該區(qū)間的頻率作為市場(chǎng)需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場(chǎng)需求量落入100,110)的頻率),求T的分布列及數(shù)學(xué)期望E(T).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的導(dǎo)函數(shù), 為自然對(duì)數(shù)的底數(shù).
(1)討論 的單調(diào)性;
(2)當(dāng) 時(shí),證明: ;
(3)當(dāng) 時(shí),判斷函數(shù) 零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩陣A的變換下,坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,縱坐標(biāo)不變.
(1)求矩陣A及A1
(2)求圓x2+y2=4在矩陣A1的變換下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 若an+1+(﹣1)nan=n,則S40=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)a,b滿(mǎn)足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2 , 求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項(xiàng)和,b1=3,S5=35.
(1)求{an}和{bn} 的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn} 滿(mǎn)足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C:y2=3px(p≥0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

同步練習(xí)冊(cè)答案