【題目】已知函數(shù) 是 的導(dǎo)函數(shù), 為自然對數(shù)的底數(shù).
(1)討論 的單調(diào)性;
(2)當 時,證明: ;
(3)當 時,判斷函數(shù) 零點的個數(shù),并說明理由.
【答案】
(1)
解:對函數(shù) 求導(dǎo)得 ,
,
①當 時, ,故 在 上為減函數(shù);
②當 時,解 可得 ,故 的減區(qū)間為 ,增區(qū)間為 ;
(2)
,設(shè) ,則 ,
易知當 時, ,
;
即g( )>0.
(3)
由(1)可知,當 時, 是先減再增的函數(shù),
其最小值為 ,
而此時 ,且 ,故 恰有兩個零點 ,
∵當 時, ;當 時, ;當 時,
,
∴ 在 兩點分別取到極大值和極小值,且 ,
由 知 ,
∴ ,
∵ ,∴ ,但當 時, ,則 ,不合題意,所以 ,故函數(shù) 的圖象與 軸不可能有兩個交點.
∴函數(shù) 只有一個零點.
【解析】(1)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性,可考慮二階求導(dǎo);(2)利用導(dǎo)數(shù)表示出單調(diào)性,根據(jù)單調(diào)性進行證明;(3)根據(jù)g(x)大致判斷f(x)的單調(diào)性,并計算出極值點,將極值點代入f(x)中,判斷f(x)零點的個數(shù)。
【考點精析】認真審題,首先需要了解基本求導(dǎo)法則(若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中, 的對稱軸為 .
(1)試證明{2nan}是等差數(shù)列,并求{an}的通項公式;
(2)設(shè){an}的前n項和為Sn , 求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a∈R)
(1)討論f(x)在(0,+∞)上的單調(diào)性;
(2)若對任意的正整數(shù)[﹣1,1)都有 成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大。
(2)求cos( ﹣B)﹣2sin2 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖沖之之子祖暅是我國南北朝時代偉大的科學(xué)家,他在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”.意思是,如果兩個等高的幾何體 在同高處截得的截面面積恒等,那么這兩個幾何體的體積相等.此即祖暅原理.利用這個原理求球的體積時,需要構(gòu)造一個滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )
A.
B.
C.
D.π(4-h2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x﹣ )在[0, ]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x﹣1)=0,且在[﹣5,﹣4]上是增函數(shù),A,B是銳角三角形的兩個內(nèi)角,則( )
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔仔細算相還”.其大意為:“有一個走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”.則該人第五天走的路程為( )
A.48里
B.24里
C.12里
D.6里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13. (Ⅰ)求{an}、{bn}的通項公式;
(Ⅱ)求數(shù)列 的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com